login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205971
a(n) = Fibonacci(n)*A034896(n) for n >= 1, with a(0)=1, where A034896 lists the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.
5
1, 4, 4, 8, 60, 120, 32, 416, 1092, 136, 1320, 4272, 2880, 13048, 12064, 14640, 114492, 114984, 10336, 334480, 811800, 350272, 850128, 2751072, 2411136, 9303100, 6798008, 785672, 50849760, 61707480, 19968960, 172322432, 531507396, 169179744, 410607864
OFFSET
0,2
COMMENTS
Compare g.f. to the Lambert series of A034896:
1 + 4*Sum_{n>=1} Chi(n,3)*n*x^n/(1 - (-x)^n).
Here Chi(n,3) = principal Dirichlet character of n modulo 3.
LINKS
FORMULA
G.f.: 1 + 4*Sum_{n>=1} Fibonacci(n)*Chi(n,3)*n*x^n/(1 - Lucas(n)*(-x)^n + (-1)^n*x^(2*n)).
EXAMPLE
G.f.: A(x) = 1 + 4*x + 4*x^2 + 8*x^3 + 60*x^4 + 120*x^5 + 32*x^6 + ...
where A(x) = 1 + 1*4*x + 1*4*x^2 + 2*4*x^3 + 3*20*x^4 + 5*24*x^5 + 8*4*x^6 + ... + Fibonacci(n)*A034896(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 + 4*( 1*1*x/(1+x-x^2) + 1*2*x^2/(1-3*x^2+x^4) + 3*4*x^4/(1-7*x^4+x^8) + 5*5*x^5/(1+11*x^5-x^10) + 13*7*x^7/(1+29*x^7-x^14) + 21*8*x^8/(1-47*x^8+x^16) + ...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0,...].
MATHEMATICA
A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Join[{1}, Table[Fibonacci[n]*A034896[n], {n, 1, 50}]] (* G. C. Greubel, Dec 24 2017 *)
PROG
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(1 + 4*sum(m=1, n, fibonacci(m)*kronecker(m, 3)^2*m*x^m/(1-Lucas(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))), n)}
for(n=0, 61, print1(a(n), ", "))
CROSSREFS
Cf. A209451 (Pell variant).
Sequence in context: A102369 A298569 A281717 * A118016 A201989 A071775
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved