login
a(n) = Fibonacci(n)*A034896(n) for n >= 1, with a(0)=1, where A034896 lists the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.
5

%I #14 Dec 25 2017 04:04:53

%S 1,4,4,8,60,120,32,416,1092,136,1320,4272,2880,13048,12064,14640,

%T 114492,114984,10336,334480,811800,350272,850128,2751072,2411136,

%U 9303100,6798008,785672,50849760,61707480,19968960,172322432,531507396,169179744,410607864

%N a(n) = Fibonacci(n)*A034896(n) for n >= 1, with a(0)=1, where A034896 lists the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.

%C Compare g.f. to the Lambert series of A034896:

%C 1 + 4*Sum_{n>=1} Chi(n,3)*n*x^n/(1 - (-x)^n).

%C Here Chi(n,3) = principal Dirichlet character of n modulo 3.

%H G. C. Greubel, <a href="/A205971/b205971.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: 1 + 4*Sum_{n>=1} Fibonacci(n)*Chi(n,3)*n*x^n/(1 - Lucas(n)*(-x)^n + (-1)^n*x^(2*n)).

%e G.f.: A(x) = 1 + 4*x + 4*x^2 + 8*x^3 + 60*x^4 + 120*x^5 + 32*x^6 + ...

%e where A(x) = 1 + 1*4*x + 1*4*x^2 + 2*4*x^3 + 3*20*x^4 + 5*24*x^5 + 8*4*x^6 + ... + Fibonacci(n)*A034896(n)*x^n + ...

%e The g.f. is also given by the identity:

%e A(x) = 1 + 4*( 1*1*x/(1+x-x^2) + 1*2*x^2/(1-3*x^2+x^4) + 3*4*x^4/(1-7*x^4+x^8) + 5*5*x^5/(1+11*x^5-x^10) + 13*7*x^7/(1+29*x^7-x^14) + 21*8*x^8/(1-47*x^8+x^16) + ...).

%e The values of the Dirichlet character Chi(n,3) repeat [1,1,0,...].

%t A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Join[{1}, Table[Fibonacci[n]*A034896[n], {n, 1, 50}]] (* _G. C. Greubel_, Dec 24 2017 *)

%o (PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}

%o {a(n)=polcoeff(1 + 4*sum(m=1,n,fibonacci(m)*kronecker(m,3)^2*m*x^m/(1-Lucas(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}

%o for(n=0,61,print1(a(n),", "))

%Y Cf. A034896, A205882, A205967, A205970, A205972, A203847, A000204 (Lucas).

%Y Cf. A209451 (Pell variant).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Feb 04 2012