login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205882 a(n) = Fibonacci(n)*A109064(n) for n>=1 with a(0)=1. 4
1, -5, 5, 20, -45, -25, -80, 390, 525, -1190, 275, -5340, 4320, 13980, -11310, 6100, -54285, 127760, 90440, -418100, -101475, -656760, 1062660, 3152270, -2318400, -375125, -7283580, 19641800, 28602990, -77134350, -8320400, -215403040, 228722445, 422949360 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Compare to g.f. of A109064, which is the Lambert series identity:
1 - 5*Sum_{n>=1} L(n,5)*n*x^n/(1-x^n) = eta(x)^5/eta(x^5).
Here L(n,5) is the Legendre symbol given by A080891(n).
LINKS
FORMULA
G.f.: 1 - 5*Sum_{n>=1} Fibonacci(n)*L(n,5)*n*x^n / (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)), where L(n,5) is the Legendre symbol and Lucas(n) = A000204(n).
EXAMPLE
G.f.: A(x) = 1 - 5*x + 5*x^2 + 20*x^3 - 45*x^4 - 25*x^5 - 80*x^6 + 390*x^7 +...
where A(x) = 1 - 1*5*x + 1*5*x^2 + 2*10*x^3 - 3*15*x^4 - 5*5*x^5 - 8*10*x^6 + 13*30*x^7 + 21*25*x^8 +...+ Fibonacci(n)*A109064(n)*x^n +...
The g.f. is illustrated by:
A(x) = 1 - 5*(+1)*1*1*x/(1-x-x^2) - 5*(-1)*2*1*x^2/(1-3*x^2+x^4) - 5*(-1)*3*2*x^3/(1-4*x^3-x^6) - 5*(+1)*4*3*x^4/(1-7*x^4+x^8) - 5*(0)*5*5*x^5/(1-11*x^5-x^10) - 5*(+1)*6*8*x^6/(1-18*x^6+x^12) +...
The values of the Legendre symbol L(n,5) repeat: [1,-1,-1,1,0, ...].
MATHEMATICA
QP = QPochhammer; a[0] = 1; a[n_] := Fibonacci[n] * SeriesCoefficient[ QP[q]^5 / QP[q^5], {q, 0, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 26 2017 *)
PROG
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(1-5*sum(m=1, n, kronecker(m, 5)*m*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}
(PARI) {A109064(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)^5/eta(x^5+A), n))}
{a(n)=if(n==0, 1, fibonacci(n)*A109064(n))}
CROSSREFS
Cf. A109064, A080891 (Legendre),A000045 (Fibonacci), A000204 (Lucas), A205884 (variant).
Sequence in context: A339320 A302176 A094338 * A099921 A139470 A154640
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 01 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 04:31 EST 2023. Contains 367574 sequences. (Running on oeis4.)