The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205882 a(n) = Fibonacci(n)*A109064(n) for n>=1 with a(0)=1. 4
 1, -5, 5, 20, -45, -25, -80, 390, 525, -1190, 275, -5340, 4320, 13980, -11310, 6100, -54285, 127760, 90440, -418100, -101475, -656760, 1062660, 3152270, -2318400, -375125, -7283580, 19641800, 28602990, -77134350, -8320400, -215403040, 228722445, 422949360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare to g.f. of A109064, which is the Lambert series identity: 1 - 5*Sum_{n>=1} L(n,5)*n*x^n/(1-x^n) = eta(x)^5/eta(x^5). Here L(n,5) is the Legendre symbol given by A080891(n). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA G.f.: 1 - 5*Sum_{n>=1} Fibonacci(n)*L(n,5)*n*x^n / (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)), where L(n,5) is the Legendre symbol and Lucas(n) = A000204(n). EXAMPLE G.f.: A(x) = 1 - 5*x + 5*x^2 + 20*x^3 - 45*x^4 - 25*x^5 - 80*x^6 + 390*x^7 +... where A(x) = 1 - 1*5*x + 1*5*x^2 + 2*10*x^3 - 3*15*x^4 - 5*5*x^5 - 8*10*x^6 + 13*30*x^7 + 21*25*x^8 +...+ Fibonacci(n)*A109064(n)*x^n +... The g.f. is illustrated by: A(x) = 1 - 5*(+1)*1*1*x/(1-x-x^2) - 5*(-1)*2*1*x^2/(1-3*x^2+x^4) - 5*(-1)*3*2*x^3/(1-4*x^3-x^6) - 5*(+1)*4*3*x^4/(1-7*x^4+x^8) - 5*(0)*5*5*x^5/(1-11*x^5-x^10) - 5*(+1)*6*8*x^6/(1-18*x^6+x^12) +... The values of the Legendre symbol L(n,5) repeat: [1,-1,-1,1,0, ...]. MATHEMATICA QP = QPochhammer; a[0] = 1; a[n_] := Fibonacci[n] * SeriesCoefficient[ QP[q]^5 / QP[q^5], {q, 0, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 26 2017 *) PROG (PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)} {a(n)=polcoeff(1-5*sum(m=1, n, kronecker(m, 5)*m*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)} (PARI) {A109064(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)^5/eta(x^5+A), n))} {a(n)=if(n==0, 1, fibonacci(n)*A109064(n))} CROSSREFS Cf. A109064, A080891 (Legendre),A000045 (Fibonacci), A000204 (Lucas), A205884 (variant). Sequence in context: A339320 A302176 A094338 * A099921 A139470 A154640 Adjacent sequences: A205879 A205880 A205881 * A205883 A205884 A205885 KEYWORD sign AUTHOR Paul D. Hanna, Feb 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 04:31 EST 2023. Contains 367574 sequences. (Running on oeis4.)