The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205880 [s(k)-s(j)]/10, where the pairs (k,j) are given by A205877 and A205878, and s(k) denotes the (k+1)-st Fibonacci number. 3
 1, 2, 5, 11, 23, 22, 61, 122, 61, 255, 244, 418, 416, 676, 671, 1771, 1769, 1353, 2828, 2767, 2706, 4636, 7502, 7497, 6826, 12139, 12138, 12116, 19641, 15005, 31781, 31779, 31363, 30010, 51414, 83143, 134618, 83204, 217822, 166408, 83204 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For a guide to related sequences, see A205840. LINKS Table of n, a(n) for n=1..41. EXAMPLE The first three terms match these differences: s(6)-s(3) = 13-3 = 10 = 10*1 s(7)-s(1) = 21-1 = 20 = 10*2 s(9)-s(4) = 55-5 = 50 = 10*5 MATHEMATICA s[n_] := s[n] = Fibonacci[n + 1]; z1 = 600; z2 = 50; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204922 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 10; t = d[c] (* A205876 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205877 *) Table[j[n], {n, 1, z2}] (* A205878 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205879 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205880 *) CROSSREFS Cf. A204892, A205877, A205879. Sequence in context: A033120 A365243 A091617 * A009293 A180337 A257130 Adjacent sequences: A205877 A205878 A205879 * A205881 A205882 A205883 KEYWORD nonn AUTHOR Clark Kimberling, Feb 02 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 23:40 EST 2023. Contains 367464 sequences. (Running on oeis4.)