login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205877 Numbers k for which 10 divides s(k)-s(j) for some j<k; each k occurs once for each such j; s(k) denotes the (k+1)-st Fibonacci number. 6
6, 7, 9, 11, 12, 12, 15, 16, 16, 17, 17, 18, 18, 19, 19, 21, 21, 21, 22, 22, 22, 23, 24, 24, 24, 25, 25, 25, 26, 26, 27, 27, 27, 27, 28, 29, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 33, 34, 34 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For a guide to related sequences, see A205840.

LINKS

Table of n, a(n) for n=1..50.

EXAMPLE

The first three terms match these differences:

s(6)-s(3) = 13-3 = 10 = 10*1

s(7)-s(1) = 21-1 = 20 = 10*2

s(9)-s(4) = 55-5 = 50 = 10*5

MATHEMATICA

s[n_] := s[n] = Fibonacci[n + 1]; z1 = 600; z2 = 50;

f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];

Table[s[n], {n, 1, 30}]

u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]

Table[u[m], {m, 1, z1}]     (* A204922 *)

v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]

w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]

d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]

c = 10; t = d[c]    (* A205876 *)

k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]

j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2

Table[k[n], {n, 1, z2}]     (* A205877 *)

Table[j[n], {n, 1, z2}]      (* A205878 *)

Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205879 *)

Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}]  (* A205880 *)

CROSSREFS

Cf. A204892, A205878, A205880.

Sequence in context: A216361 A216360 A339928 * A081053 A022892 A120164

Adjacent sequences:  A205874 A205875 A205876 * A205878 A205879 A205880

KEYWORD

nonn

AUTHOR

Clark Kimberling, Feb 02 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 10:08 EDT 2022. Contains 356039 sequences. (Running on oeis4.)