login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339928
Numbers k such that the removal of all terminating even digits from k! leaves a prime.
0
6, 7, 9, 10, 43, 138, 1068
OFFSET
1,1
COMMENTS
a(8) > 1500.
If only the terminating zeros are removed, 2 is the only number whose factorial becomes prime.
If one also removes 5s at the end, 7 is no longer in the sequence and no numbers below 1500 are added to the sequence.
a(8) > 20000. - Michael S. Branicky, Jul 05 2024
EXAMPLE
43! = 60415263063373835637355132068513997507264512000000000. After removing all even digits at the end, we are left with 6041526306337383563735513206851399750726451, which is prime. So 43 is a term of this sequence.
27! = 10888869450418352160768000000. After removing all even digits at the end, we are left with 108888694504183521607, which is not prime. So 27 is not a term of this sequence.
PROG
(PARI) for(n=1, 1500, k=n!; while(!(k%2), k\=10; if(k==0, break)); if(isprime(k), print1(n, ", ")))
(Python)
from sympy import factorial, isprime
def ok(n):
fn = factorial(n)
while fn > 0 and fn%2 == 0: fn //= 10
return fn > 0 and isprime(fn)
print(list(filter(ok, range(200)))) # Michael S. Branicky, Jun 07 2021
CROSSREFS
Cf. A000142.
Sequence in context: A287347 A216361 A216360 * A205877 A081053 A022892
KEYWORD
nonn,base,more
AUTHOR
Derek Orr, Dec 23 2020
STATUS
approved