login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205969
a(n) = Fibonacci(n)*A113973(n) for n>=1, with a(0)=1, where A113973 lists the coefficients in phi(x^3)^3/phi(x) and phi() is a Ramanujan theta function.
6
1, -2, 4, -4, 6, 0, 32, -52, 84, -68, 0, 0, 288, -932, 3016, 0, 1974, 0, 10336, -16724, 0, -43784, 0, 0, 185472, -150050, 971144, -392836, 1271244, 0, 0, -5385076, 8713236, 0, 0, 0, 29860704, -96631268, 312705352, -252983944, 0, 0, 2143314368, -1733977748, 0
OFFSET
0,2
COMMENTS
Compare g.f. to the Lambert series of A113973: 1 - 2*Sum_{n>=1} Kronecker(n,3)*x^n/(1 - (-x)^n).
LINKS
FORMULA
G.f.: 1 - 2*Sum_{n>=1} Fibonacci(n)*Kronecker(n,3)*x^n/(1 - Lucas(n)*(-x)^n + (-1)^n*x^(2*n)).
EXAMPLE
G.f.: A(x) = 1 - 2*x + 4*x^2 - 4*x^3 + 6*x^4 + 32*x^6 - 52*x^7 + 84*x^8 +...
where A(x) = 1 - 1*2*x + 1*4*x^2 - 2*2*x^3 + 3*2*x^4 + 8*4*x^6 - 13*4*x^7 + 21*4*x^8 +...+ Fibonacci(n)*A113973(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 - 2*( 1*x/(1+x-x^2) - 1*x^2/(1-3*x^2+x^4) + 3*x^4/(1-7*x^4+x^8) - 5*x^5/(1+11*x^5-x^10) + 13*x^7/(1+29*x^7-x^14) - 21*x^8/(1-47*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
MATHEMATICA
A113973:= CoefficientList[Series[EllipticTheta[3, q^3]^3/EllipticTheta[3, 0, q], {q, 0, 75}], q]; Table[If[n == 1, 1, Fibonacci[n-1]*A113973[[n]] ], {n, 1, 50}] (* G. C. Greubel, Jul 17 2018 *)
PROG
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(1 - 2*sum(m=1, n, fibonacci(m)*kronecker(m, 3)*x^m/(1-Lucas(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))), n)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Cf. A209449 (Pell variant).
Sequence in context: A223227 A160904 A306340 * A326771 A049782 A372785
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved