The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205973 a(n) = Fibonacci(n)*A109041(n) for n>=1, with a(0)=1, where A109041 lists the coefficients in eta(q)^9/eta(q^3)^3. 4
 1, -9, 27, -18, -351, 1080, 216, -5850, 9639, -306, -35640, 96120, -16848, -356490, 508950, 131760, -1821015, 4139424, 69768, -13621698, 18996120, -4925700, -57383640, 136178064, 21282912, -405810225, 557193870, -1767762, -1859194350, 3887571240, -539161920 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare the g.f. to the Lambert series of A109041: 1 - 9*Sum_{n>=1} Kronecker(n,3)*n^2*x^n/(1-x^n). LINKS FORMULA G.f.: 1 - 9*Sum_{n>=1} Fibonacci(n)*Kronecker(n,3)*n^2*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)). EXAMPLE G.f.: A(x) = 1 - 9*x + 27*x^2 - 18*x^3 - 351*x^4 + 1080*x^5 + 216*x^6 +... where A(x) = 1 - 1*9*x + 1*27*x^2 - 2*9*x^3 - 3*117*x^4 + 5*216*x^5 + 8*27*x^6 - 13*450*x^7 + 21*459*x^8 +...+ Fibonacci(n)*A109041(n)*^n +... The g.f. is also given by the identity: A(x) = 1 - 9*( 1*1*x/(1-x-x^2) - 1*4*x^2/(1-3*x^2+x^4) + 3*16*x^4/(1-7*x^4+x^8) - 5*25*x^5/(1-11*x^5-x^10) + 13*49*x^7/(1-29*x^7-x^14) - 21*64*x^8/(1-47*x^8+x^16) +...). The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...]. PROG (PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)} {a(n)=polcoeff(1 - 9*sum(m=1, n, fibonacci(m)*kronecker(m, 3)*m^2*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))), n)} for(n=0, 40, print1(a(n), ", ")) CROSSREFS Cf. A109041, A205972, A205974, A203847, A000204 (Lucas). Cf. A209453 (Pell variant). Sequence in context: A109041 A227900 A010817 * A122985 A255622 A209511 Adjacent sequences:  A205970 A205971 A205972 * A205974 A205975 A205976 KEYWORD sign AUTHOR Paul D. Hanna, Feb 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 10 15:51 EDT 2021. Contains 343775 sequences. (Running on oeis4.)