login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035536
Number of partitions of n with equal number of parts congruent to each of 1 and 2 (mod 3)
1
1, 0, 0, 2, 0, 0, 6, 0, 0, 14, 0, 0, 32, 0, 0, 66, 0, 0, 134, 0, 0, 256, 0, 0, 480, 0, 0, 868, 0, 0, 1540, 0, 0, 2664, 0, 0, 4536, 0, 0, 7574, 0, 0, 12474, 0, 0, 20234, 0, 0, 32428, 0, 0, 51324, 0, 0, 80388, 0, 0, 124582, 0, 0, 191310, 0, 0, 291114, 0, 0, 439394, 0, 0, 657936, 0, 0
OFFSET
0,4
MAPLE
b:= proc(n, i, c) option remember; `if`(n=0,
`if`(c=0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+
b(n-i, min(n-i, i), c+[0, 1, -1][1+irem(i, 3)])))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..70); # Alois P. Heinz, Sep 04 2020
MATHEMATICA
equalQ[partit_] := Total[Switch[Mod[#, 3], 0, 0, 1, 1, 2, -1]& /@ partit] == 0; a[n_] := If[Mod[n, 3] != 0, 0, Select[IntegerPartitions[n], equalQ] // Length]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 71}] (* Jean-François Alcover, Dec 07 2016 *)
CROSSREFS
Trisection gives: A035592.
Sequence in context: A364790 A094785 A265856 * A205974 A098643 A193474
KEYWORD
nonn
EXTENSIONS
More terms from David W. Wilson
STATUS
approved