login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035537
Number of partitions of n with equal nonzero number of parts congruent to each of 0 and 1 (mod 3).
0
0, 0, 0, 0, 1, 0, 1, 2, 2, 3, 5, 5, 9, 10, 15, 18, 24, 30, 40, 47, 65, 76, 97, 120, 150, 179, 229, 270, 336, 404, 494, 588, 722, 852, 1035, 1227, 1476, 1744, 2090, 2461, 2935, 3446, 4092, 4795, 5665, 6627, 7801, 9096, 10680, 12426, 14528, 16881, 19680, 22800, 26525
OFFSET
0,8
MAPLE
b := proc(n, i, t, s) option remember; `if`(n=0,
`if`(t = s and t >= 1, 1, 0), `if`(i<1, 0, b(n, i-1, t, s)+
b(n-i, min(n-i, i), t + [1, 0, 0][1+irem(i, 3)], s + [0, 1, 0][1+irem(i, 3)])))
end:
seq(b(n, n, 0, 0), n=0..50); # Georg Fischer, Sep 13 2020
MATHEMATICA
equalQ[partit_] := With[{t = Total[Switch[Mod[#, 3], 0, {1, 0, 0}, 1, {0, 1, 0}, 2, {0, 0, 1}]& /@ partit]}, t[[1]] > 0 && t[[1]] == t[[2]]]; a[n_] := Select[IntegerPartitions[n], equalQ] // Length; a[0] = 0; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 54}] (* Jean-François Alcover, Dec 07 2016 *)
CROSSREFS
Sequence in context: A011971 A060048 A110699 * A285407 A292802 A247376
KEYWORD
nonn
STATUS
approved