login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110699
Binary length of the smallest prime with Hamming weight n (given by A061712).
4
2, 2, 3, 5, 5, 9, 7, 9, 10, 11, 12, 13, 13, 17, 16, 17, 17, 19, 19, 21, 22, 24, 24, 25, 26, 28, 28, 29, 30, 33, 31, 33, 34, 35, 36, 38, 38, 40, 40, 41, 42, 44, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 56, 57, 59, 59, 60, 61, 61, 65, 64, 65, 66, 67, 68, 69, 70, 72, 72, 73
OFFSET
1,1
COMMENTS
a(n)=n iff n belongs to A000043.
FORMULA
a(n) = n + A110700(n).
MAPLE
with(combstruct); a:=proc(n) local m, is, s, t, r; if n=1 then return 2 fi; r:=+infinity; for m from 0 do is := iterstructs(Combination(n-2+m), size=n-2); while not finished(is) do s := nextstruct(is); t := 2^(n-1+m)+1+add(2^i, i=s); if isprime(t) then return n+m fi; od; od; return 0; end;
MATHEMATICA
A061712[n_] := A061712[n] = Module[{m, s, k, p}, For[m=0, True, m++, s = {1, Sequence @@ #, 1} & /@ Permutations[Join[Table[1, {n-2}], Table[0, {m}]]] // Sort; For[k=1, k <= Length[s], k++, p = FromDigits[s[[k]], 2]; If[PrimeQ[p], Return[p] ]]]]; A061712[1]=2; Table[IntegerDigits[A061712[n], 2] // Length, {n, 1, 100}] (* Jean-François Alcover, Mar 16 2015 *)
PROG
(PARI) a(n) = {forprime(p=2, , if (hammingweight(p) == n, return(#binary(p))); ); } \\ Michel Marcus, Mar 16 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Max Alekseyev, Aug 03 2005
STATUS
approved