login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364790
Triangle read by rows: T(n, k) is the number of n X n symmetric Toeplitz matrices of rank k using all the integers 0, 1, 2, ..., n-1.
1
1, 0, 2, 0, 0, 6, 0, 0, 1, 23, 0, 0, 0, 0, 120, 0, 0, 0, 0, 2, 718, 0, 0, 0, 0, 4, 31, 5005, 0, 0, 0, 0, 0, 2, 44, 40274, 0, 0, 0, 0, 0, 0, 4, 284, 362592, 0, 0, 0, 0, 0, 0, 0, 111, 769, 3627920, 0, 0, 0, 0, 0, 0, 2, 14, 244, 7056, 39909484, 0, 0, 0, 0, 0, 0, 0, 4, 64, 742, 9667, 478991123
OFFSET
1,3
EXAMPLE
The triangle begins:
1;
0, 2;
0, 0, 6;
0, 0, 1, 23;
0, 0, 0, 0, 120;
0, 0, 0, 0, 2, 718;
0, 0, 0, 0, 4, 31, 5005;
0, 0, 0, 0, 0, 2, 44, 40274;
0, 0, 0, 0, 0, 0, 4, 284, 362592;
...
MATHEMATICA
T[n_, k_]:= Count[Table[MatrixRank[ToeplitzMatrix[Part[Permutations[Join[{0}, Range[n-1]]], i]]], {i, n!}], k]; Join[{1}, Table[T[n, k], {n, 2, 9}, {k, n}]]//Flatten
PROG
(PARI)
MkMat(v)={matrix(#v, #v, i, j, v[1+abs(i-j)])}
row(n)={if(n==1, [1], my(f=vector(n)); forperm(vector(n, i, i-1), v, f[matrank(MkMat(v))]++); f)} \\ Andrew Howroyd, Jan 07 2024
CROSSREFS
Cf. A000142 (row sums), A358323 (minimal determinant), A358324 (maximal determinant), A358326 (minimal permanent), A358327 (maximal permanent), A364791 (right diagonal).
Sequence in context: A364233 A364230 A259857 * A094785 A265856 A035536
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Aug 08 2023
EXTENSIONS
Terms a(46) and beyond from Andrew Howroyd, Jan 07 2024
STATUS
approved