login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364789
Initial digit of (n^n)^n (A002489(n)).
4
1, 1, 1, 1, 4, 2, 1, 2, 6, 1, 1, 1, 2, 1, 4, 4, 1, 3, 5, 4, 2, 1, 5, 2, 1, 5, 3, 2, 3, 7, 2, 1, 1, 4, 2, 3, 9, 7, 1, 1, 1, 1, 2, 1, 5, 5, 2, 4, 3, 1, 2, 2, 1, 3, 4, 3, 2, 6, 1, 2, 2, 1, 8, 3, 1, 3, 8, 1, 3, 5, 9, 1, 2, 4, 8, 1, 3, 1, 3, 1, 5, 3, 3, 3, 5, 1, 3
OFFSET
0,5
COMMENTS
a(0) = 1 is from (0^0)^0 = 1 per A002489.
The author conjectures that this sequence obeys the well-known Benford's law.
LINKS
Pointless Large numbers stuff by Cookiefonster, 2.03 The Weak Hyper-Operators.
Wikipedia, Benford's law.
FORMULA
a(n) = floor(((n^n)^n)/10^floor(log_10((n^n)^n))).
a(n) = A000030(A002489(n)).
EXAMPLE
a(4) = 4, since (4^4)^4 = 4^(4^2) = 4294967296.
MATHEMATICA
A364789[n_] := If[n == 0, 1, First[IntegerDigits[(n^n)^n]]];
Array[A364789, 100, 0] (* Paolo Xausa, Jan 31 2024 *)
PROG
(Python)
def A364789(n): return int(str((n**n)**n)[0]) # Chai Wah Wu, Aug 10 2023
CROSSREFS
Cf. A229522 (final digit).
Sequence in context: A132116 A327252 A229974 * A281065 A280988 A175665
KEYWORD
base,easy,nonn
AUTHOR
Marco Ripà, Aug 08 2023
STATUS
approved