login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364786
We exclude powers of 10 and numbers of the form 11...111 in which the number of 1's is a power of 10. Then a(n) is the smallest number (not excluded) whose trajectory under iteration of "x -> sum of n-th powers of digits of x" reaches 1.
0
19, 7, 112, 11123, 1111222, 111111245666689, 1111133333333335, 1111122333333333333333333346677777777888, 22222222222222222226666668888888, 233444445555555555555555555555555555555555555555555577, 1222222222233333333333333444444444455555555555555556666666666666666666666677778888889
OFFSET
1,1
COMMENTS
For n!=2, it appears that the first step in the trajectory is always to a power of 10, so that the task would be to find the shortest and lexicographically smallest partition of a power of 10 into parts 1^n,...,9^n.
EXAMPLE
a(1) = 19 since 1^1 + 9^1 = 10 and 1^1 + 0^1 = 1.
a(3) = 112 since 1^3 + 1^3 + 2^3 = 10 and 1^3 + 0^3 = 1.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Simon R Blow, Aug 07 2023
EXTENSIONS
a(6), a(8), and a(9) corrected by, and a(10) and a(11) from Jon E. Schoenfield, Aug 10 2023
Definition clarified by N. J. A. Sloane, Sep 15 2023
STATUS
approved