Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Sep 15 2023 04:14:29
%S 19,7,112,11123,1111222,111111245666689,1111133333333335,
%T 1111122333333333333333333346677777777888,
%U 22222222222222222226666668888888,233444445555555555555555555555555555555555555555555577,1222222222233333333333333444444444455555555555555556666666666666666666666677778888889
%N We exclude powers of 10 and numbers of the form 11...111 in which the number of 1's is a power of 10. Then a(n) is the smallest number (not excluded) whose trajectory under iteration of "x -> sum of n-th powers of digits of x" reaches 1.
%C For n!=2, it appears that the first step in the trajectory is always to a power of 10, so that the task would be to find the shortest and lexicographically smallest partition of a power of 10 into parts 1^n,...,9^n.
%e a(1) = 19 since 1^1 + 9^1 = 10 and 1^1 + 0^1 = 1.
%e a(3) = 112 since 1^3 + 1^3 + 2^3 = 10 and 1^3 + 0^3 = 1.
%Y Cf. A007770, A035497, A046519.
%K nonn,base
%O 1,1
%A _Simon R Blow_, Aug 07 2023
%E a(6), a(8), and a(9) corrected by, and a(10) and a(11) from _Jon E. Schoenfield_, Aug 10 2023
%E Definition clarified by _N. J. A. Sloane_, Sep 15 2023