OFFSET
0,1
COMMENTS
The corresponding values for two to nine points have simple expressions:
N ... d_min
2 ... sqrt(2) (A002193)
3 ... sqrt(6) - sqrt(2) (A120683)
4 ... 1 (A000007)
5 ... sqrt(2) / 2 (A010503)
6 ... sqrt(13) / 6
7 ... 4 - 2*sqrt(3)
8 ... sqrt(2 - sqrt(3)) (A101263)
9 ... 1 / 2 (A020761)
In contrast, the value for ten points has a minimal polynomial of degree 18.
The smallest square ten unit circles will fit into has side length s = 2 + 2/d = 6.74744152... and the maximum radius of ten non-overlapping circles in the unit square is 1 / s = 0.14820432...
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.
LINKS
C. de Groot, R. Peikert, and D. Würtz, The Optimal Packing of Ten Equal Circles in a Square, IPS Research Report, ETH Zürich, No. 90-12, August 1990.
Eckard Specht, The best known packings of equal circles in a square.
Jeremy Tan, Sympy (Python) program.
FORMULA
d is the smallest real root of 1180129*d^18 - 11436428*d^17 + 98015844*d^16 - 462103584*d^15 + 1145811528*d^14 - 1398966480*d^13 + 227573920*d^12 + 1526909568*d^11 - 1038261808*d^10 - 2960321792*d^9 + 7803109440*d^8 - 9722063488*d^7 + 7918461504*d^6 - 4564076288*d^5 + 1899131648*d^4 - 563649536*d^3 + 114038784*d^2 - 14172160*d + 819200.
EXAMPLE
0.421279543983903432768821760650298...
PROG
(PARI) p = Pol([1180129, -11436428, 98015844, -462103584, 1145811528, -1398966480, 227573920, 1526909568, -1038261808, -2960321792, 7803109440, -9722063488, 7918461504, -4564076288, 1899131648, -563649536, 114038784, -14172160, 819200]); polrootsreal(p)[1]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jeremy Tan, Jan 14 2017
STATUS
approved