login
A101263
Decimal expansion of sqrt(2 - sqrt(3)), edge length of a regular dodecagon with circumradius 1.
9
5, 1, 7, 6, 3, 8, 0, 9, 0, 2, 0, 5, 0, 4, 1, 5, 2, 4, 6, 9, 7, 7, 9, 7, 6, 7, 5, 2, 4, 8, 0, 9, 6, 6, 5, 6, 6, 9, 8, 1, 3, 7, 8, 0, 2, 6, 3, 9, 8, 6, 1, 0, 2, 7, 6, 2, 8, 0, 0, 6, 4, 1, 4, 6, 3, 0, 1, 1, 3, 9, 4, 9, 4, 9, 7, 6, 0, 3, 9, 9, 3, 8, 4, 4, 7, 3, 5, 9, 4, 9, 3, 8, 8, 4, 9, 9, 3, 3
OFFSET
0,1
COMMENTS
sqrt(2 - sqrt(3)) is the shape of the lesser sqrt(6)-contraction rectangle, as defined at A188739. - Clark Kimberling, Apr 16 2011
This is a constructible number, since 12-gon is a constructible polygon. See A003401 for more details. - Stanislav Sykora, May 02 2016
It is also smaller positive coordinate of (symmetrical) intersection points of x^2 + y^2 = 4 circle and y = 1/x hyperbola. The bigger coordinate is A188887. - Leszek Lezniak, Sep 18 2018
LINKS
Eric Weisstein's World of Mathematics, Dodecagon.
FORMULA
Equals sqrt(A019913). - R. J. Mathar, Apr 20 2009
Equals 2*sin(Pi/12) = 2*cos(Pi*5/12). - Stanislav Sykora, May 02 2016
Equals i^(5/6) + i^(-5/6). - Gary W. Adamson, Jul 07 2022
EXAMPLE
0.517638090205041524697797675248096656698137802639861027628006414630113....
MATHEMATICA
r = 6^(1/2); t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t]
N[t, 130]
RealDigits[N[t, 130]][[1]] (*A101263*)
RealDigits[Sqrt[2-Sqrt[3]], 10, 120][[1]] (* Harvey P. Dale, Apr 24 2018 *)
PROG
(PARI) 2*sin(Pi/12) \\ Stanislav Sykora, May 02 2016
CROSSREFS
Sequence in context: A332343 A035109 A301509 * A187561 A088515 A200638
KEYWORD
cons,nonn
AUTHOR
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 25 2005
STATUS
approved