OFFSET
1,1
COMMENTS
If n is of the form p*28, where p is a prime distinct from 2 or 7 then n is in this sequence, note that 28 is a perfect number. The terms in the sequence but not divisible by 28 are 4544, 9272, 14552, 25472, 74992, 495104... - Enrique Pérez Herrero, Apr 15 2012
If p=2^k-57 is prime (cf. A165778), then 2^(k-1)*p is in the sequence: For the first such k=6,7,8,10,16,19,22,28,..., this yields 224, 4544, 25472, 495104, 2145615872, 137424011264, 8795973484544, 36028789368553472, ... - M. F. Hasler, Apr 15 2012
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..3000
F. Firoozbakht and M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
EXAMPLE
84 is a term of the sequence because 2*2*3*7 = 84 and 84 - 42 - 28 - 21 - 14 - 12 - 7 - 6 - 4 - 3 - 2 = g(84) = -55.
MATHEMATICA
Select[ Range[5500], DivisorSigma[1, # ] == 2# + 56 &] (* Robert G. Wilson v, Dec 22 2004 *)
PROG
(Magma) [n: n in [1..10^4] |DivisorSigma(1, n) eq 2*n+56]; // Vincenzo Librandi, Jul 30 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vassil K. Tintschev (tinchev(AT)sunhe.jinr.ru), Dec 17 2004
STATUS
approved