login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341128
Numbers k such that A341117(k) is prime.
1
84, 154, 364, 390, 418, 420, 440, 510, 760, 870, 874, 900, 966, 1102, 1144, 1330, 1380, 1406, 1428, 1575, 1610, 1624, 1674, 1702, 1736, 1776, 1886, 1890, 1924, 1998, 2030, 2052, 2146, 2220, 2256, 2320, 2322, 2378, 2542, 2584, 2666, 2800, 2862, 3034, 3074, 3132, 3168, 3192, 3224, 3248, 3286, 3344
OFFSET
1,1
COMMENTS
Contains no prime powers or semiprimes.
LINKS
EXAMPLE
a(3) = 364 is a term because A341117(364) = 609149 is prime.
MAPLE
f:= proc(n) local D, S, i;
D:= sort(convert(numtheory:-divisors(n), list), `>`);
S:= ListTools:-PartialSums(D);
add(D[i]*S[-i], i=1..nops(D))
end proc:
select(t -> isprime(f(t)), [$1..4000]);
MATHEMATICA
Position[Array[Sum[#1[[k]]*Sum[#1[[j]], {j, #2 - k + 1, #2}], {k, #2}] & @@ {Divisors[#], DivisorSigma[0, #]} &, 3400], _?PrimeQ][[All, 1]] (* Michael De Vlieger, Feb 05 2021 *)
PROG
(PARI) f(n) = my(d=divisors(n)); sum(k=1, #d, d[k]*sum(i=#d-k+1, #d, d[i])); \\ A341117
isok(m) = isprime(f(m)); \\ Michel Marcus, Feb 05 2021
CROSSREFS
Cf. A341117.
Sequence in context: A101260 A141502 A039499 * A055712 A066292 A260703
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Feb 05 2021
STATUS
approved