OFFSET
1,1
COMMENTS
If k is a prime or power of a prime, A341117(k) is divisible by k.
Contains no semiprimes.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
a(3) = 66 is a term because 66 = 2*3*11 is not a prime or power of a prime and A341117(66) = 20262 = 66*307.
MAPLE
f:= proc(n) local D, S, i;
D:= sort(convert(numtheory:-divisors(n), list), `>`);
S:= ListTools:-PartialSums(D);
add(D[i]*S[-i], i=1..nops(D))
end proc:
select(t -> not isprime(t) and nops(numtheory:-factorset(t))>1 and f(t) mod t = 0, [$2..10000]);
PROG
(PARI) f(n) = my(d=divisors(n)); sum(k=1, #d, d[k]*sum(i=#d-k+1, #d, d[i])); \\ A341117
isok(m) = !(isprimepower(m) || (m==1)) && !(f(m) % m); \\ Michel Marcus, Feb 05 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Feb 05 2021
STATUS
approved