The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A341129 Numbers k such that A341117(k) is divisible by k and k is not a prime or power of a prime. 1
 42, 54, 66, 78, 102, 114, 135, 138, 147, 156, 162, 174, 186, 192, 222, 228, 246, 250, 258, 282, 318, 354, 366, 372, 402, 426, 438, 444, 474, 498, 507, 516, 534, 582, 606, 618, 642, 654, 678, 686, 732, 762, 786, 804, 822, 834, 845, 876, 894, 906, 942, 948, 978, 1002, 1029, 1038, 1074, 1083, 1086 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If k is a prime or power of a prime, A341117(k) is divisible by k. Contains no semiprimes. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE a(3) = 66 is a term because 66 = 2*3*11 is not a prime or power of a prime and A341117(66) = 20262 = 66*307. MAPLE f:= proc(n) local D, S, i;   D:= sort(convert(numtheory:-divisors(n), list), `>`);   S:= ListTools:-PartialSums(D);   add(D[i]*S[-i], i=1..nops(D)) end proc: select(t -> not isprime(t) and nops(numtheory:-factorset(t))>1 and f(t) mod t = 0, [\$2..10000]); PROG (PARI) f(n) = my(d=divisors(n)); sum(k=1, #d, d[k]*sum(i=#d-k+1, #d, d[i])); \\ A341117 isok(m) = !(isprimepower(m) || (m==1)) && !(f(m) % m); \\ Michel Marcus, Feb 05 2021 CROSSREFS Cf. A341039, A341117. Sequence in context: A083244 A125009 A008886 * A182147 A029695 A307986 Adjacent sequences:  A341126 A341127 A341128 * A341130 A341131 A341132 KEYWORD nonn AUTHOR J. M. Bergot and Robert Israel, Feb 05 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 12:57 EDT 2021. Contains 343666 sequences. (Running on oeis4.)