login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A066292
Numbers n such that n divides sigma_(2^k)(n), the sum of the 2^k powers of the divisors of n, for all k>1.
4
1, 84, 156, 364, 1092, 435708, 986076, 1118480, 1441188, 1674036, 2446668, 2597868, 3108924, 3875508, 4150692, 5537196, 6066396, 6686316, 13729212, 14639436, 18735444, 23307732, 27092052, 31806684, 58266468, 69728724
OFFSET
1,2
COMMENTS
Let d be the vector of divisors of n. The sequence d^(2^k) mod n has some period p. Thus if n divides sigma_(2^k)(n) for one period, then n divides sigma_(2^k)(n) for all k. For these n, the first period ends for k < 158. Hence it is easy to verify divisibility for all k. - T. D. Noe, Apr 11 2006
EXAMPLE
n=84 is here because 84 divides each one of sigma_4(n)=53771172, sigma_8(n)=2488859101224132, sigma_16(n)=6144339637187846520573009496452, etc.
MATHEMATICA
t={}; Do[If[Mod[DivisorSigma[4, n], n]==0, AppendTo[t, n]], {n, 10^8}]; Do[t=Select[t, Mod[DivisorSigma[2^k, # ], # ]==0&], {k, 3, 20}]; t (* T. D. Noe, Apr 11 2006 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 12 2001
EXTENSIONS
Edited by T. D. Noe, Apr 11 2006
STATUS
approved