login
A066291
Numbers m such that DivisorSigma(8*k-4, m) mod m = 0 holds presumably for all k; that is, (8*k-4)-power-sums of divisors of m are divisible by m for all k.
0
1, 34, 492, 5617, 11234, 22468, 67404, 190978, 709937, 763912, 1419874, 2839748, 5073996, 5446841, 7914353, 8519244, 10893682, 11548552, 15828706, 17126233, 21787364, 31657412, 34252466, 43574728, 57928121, 63314824, 65362092, 68504932, 73084632, 94972236
OFFSET
1,2
FORMULA
DivisorSigma(8*k-4, m)/m is an integer for k = 1, 2, 3, ..., 200, ...
EXAMPLE
Tested for each m with k < 200.
Tested for each m with k < 500. - Sean A. Irvine, Oct 07 2023
MATHEMATICA
Table[Union[Table[ IntegerQ[DivisorSigma[8*k-4, Part[t, m]]/Part[t, m]], {k, 1, 200}]], {m, 1, Length[t]}]; where t denotes the table of sequence.
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 12 2001
EXTENSIONS
More terms from Sean A. Irvine, Oct 07 2023
STATUS
approved