login
Numbers m such that DivisorSigma(8*k-4, m) mod m = 0 holds presumably for all k; that is, (8*k-4)-power-sums of divisors of m are divisible by m for all k.
0

%I #13 Oct 07 2023 21:39:15

%S 1,34,492,5617,11234,22468,67404,190978,709937,763912,1419874,2839748,

%T 5073996,5446841,7914353,8519244,10893682,11548552,15828706,17126233,

%U 21787364,31657412,34252466,43574728,57928121,63314824,65362092,68504932,73084632,94972236

%N Numbers m such that DivisorSigma(8*k-4, m) mod m = 0 holds presumably for all k; that is, (8*k-4)-power-sums of divisors of m are divisible by m for all k.

%F DivisorSigma(8*k-4, m)/m is an integer for k = 1, 2, 3, ..., 200, ...

%e Tested for each m with k < 200.

%e Tested for each m with k < 500. - _Sean A. Irvine_, Oct 07 2023

%t Table[Union[Table[ IntegerQ[DivisorSigma[8*k-4, Part[t, m]]/Part[t, m]], {k, 1, 200}]], {m, 1, Length[t]}]; where t denotes the table of sequence.

%Y Cf. A066135, A066284, A066289-A066292.

%K nonn

%O 1,2

%A _Labos Elemer_, Dec 12 2001

%E More terms from _Sean A. Irvine_, Oct 07 2023