|
|
A035109
|
|
Numerators in expansion of a certain Dirichlet series.
|
|
1
|
|
|
1, 1, 5, 1, 7, 5, 9, 1, 17, 7, 13, 5, 15, 9, 35, 1, 19, 17, 21, 7, 45, 13, 25, 5, 37, 15, 53, 9, 31, 35, 33, 1, 65, 19, 63, 17, 39, 21, 75, 7, 43, 45, 45, 13, 119, 25, 49, 5, 65, 37, 95, 15, 55, 53, 91, 9, 105, 31, 61, 35, 63, 33, 153, 1, 105, 65, 69, 19, 125, 63, 73, 17, 75, 39
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is also the number of orbits of length n for the map SxT where S has one orbit of each length and T has one orbit of each odd length. - Thomas Ward, Apr 08 2009
|
|
LINKS
|
M. Baake and R. V. Moody, Similarity submodules and semigroups in Quasicrystals and Discrete Geometry, ed. J. Patera, Fields Institute Monographs, vol. 10 AMS, Providence, RI (1998) pp. 1-13.
|
|
FORMULA
|
Dirichlet g.f.: zeta(s)*Product((1+p^-s)/(1-p^(1-s))), p > 2.
a(n) = (1/n)*sumdiv(n,d,mu(n/d)sum(d,e,e)sum(d,e odd only,e). - Thomas Ward, Apr 08 2009
|
|
EXAMPLE
|
a(6) = (1/6)*(mu(6)*1*1 + mu(3)*3*1 + mu(2)*4*4 + mu(1)*4*12) = 5. - Thomas Ward, Apr 08 2009
|
|
MATHEMATICA
|
a[n_] := (1/n)*DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[1, #]*DivisorSum[ #, If[OddQ[#], #, 0]&]&]; Array[a, 80] (* Jean-François Alcover, Dec 07 2015, adapted from PARI *)
|
|
PROG
|
(PARI) a(n)=(1/n)*sumdiv(n, d, moebius(n/d)*sigma(d)*sumdiv(d, e, if(e%2, e, 0))) \\ Thomas Ward, Apr 08 2009
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|