login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035109 Numerators in expansion of a certain Dirichlet series. 1
1, 1, 5, 1, 7, 5, 9, 1, 17, 7, 13, 5, 15, 9, 35, 1, 19, 17, 21, 7, 45, 13, 25, 5, 37, 15, 53, 9, 31, 35, 33, 1, 65, 19, 63, 17, 39, 21, 75, 7, 43, 45, 45, 13, 119, 25, 49, 5, 65, 37, 95, 15, 55, 53, 91, 9, 105, 31, 61, 35, 63, 33, 153, 1, 105, 65, 69, 19, 125, 63, 73, 17, 75, 39 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n) is also the number of orbits of length n for the map SxT where S has one orbit of each length and T has one orbit of each odd length. - Thomas Ward, Apr 08 2009
LINKS
M. Baake and R. V. Moody, Similarity submodules and semigroups in Quasicrystals and Discrete Geometry, ed. J. Patera, Fields Institute Monographs, vol. 10 AMS, Providence, RI (1998) pp. 1-13.
A. Pakapongpun, T. Ward, Functorial Orbit counting, JIS 12 (2009) 09.2.4, example 17.
FORMULA
Dirichlet g.f.: zeta(s)*Product((1+p^-s)/(1-p^(1-s))), p > 2.
a(n) = (1/n)*sumdiv(n,d,mu(n/d)sum(d,e,e)sum(d,e odd only,e). - Thomas Ward, Apr 08 2009
EXAMPLE
a(6) = (1/6)*(mu(6)*1*1 + mu(3)*3*1 + mu(2)*4*4 + mu(1)*4*12) = 5. - Thomas Ward, Apr 08 2009
MATHEMATICA
a[n_] := (1/n)*DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[1, #]*DivisorSum[ #, If[OddQ[#], #, 0]&]&]; Array[a, 80] (* Jean-François Alcover, Dec 07 2015, adapted from PARI *)
PROG
(PARI) a(n)=(1/n)*sumdiv(n, d, moebius(n/d)*sigma(d)*sumdiv(d, e, if(e%2, e, 0))) \\ Thomas Ward, Apr 08 2009
CROSSREFS
Sequence in context: A198129 A244425 A332343 * A301509 A101263 A187561
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 05:35 EDT 2023. Contains 365582 sequences. (Running on oeis4.)