login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035108
Denominators in expansion of a certain Dirichlet series.
0
1, 5, 11, 16, 25, 31, 41, 55, 61, 71, 80, 81, 101, 121, 125, 131, 151, 155, 176, 181, 191, 205, 211, 241, 251, 256, 271, 275, 281, 305, 311, 331, 341, 355, 361, 400, 401, 405, 421, 431, 451, 461, 491, 496, 505, 521, 541, 571, 601, 605, 625, 631, 641, 655, 656
OFFSET
1,2
LINKS
M. Baake and R. V. Moody, Similarity submodules and semigroups in Quasicrystals and Discrete Geometry, ed. J. Patera, Fields Institute Monographs, vol. 10 AMS, Providence, RI (1998) pp. 1-13.
Ron Lifshitz, Theory of color symmetry for periodic and quasiperiodic crystals, Rev. Mod. Phys. 69, 1181 (1997). See row N = 10 of Table VII.
FORMULA
(1-5^(-s))^(-1) * Product_{p == 1 mod 5} (1-p^(-s))^(-4) * Product_{p == 4 mod 5} (1-p^(-2s))^(-2) * Product_{p == +- 2 mod 5} (1-p^(-4s))^(-1).
PROG
(PARI) {an=vector(64); v=direuler(p=2, 800, 1/[1-X, (1-X)^4, 1-X^4, 1-X^4, (1-X^2)^2][p%5+1]); c=0; for(n=1, length(v), if(v[n], c++; an[c]=n)); print(an)}
CROSSREFS
Sequence in context: A314180 A314181 A314182 * A022136 A042385 A041046
KEYWORD
nonn,easy
STATUS
approved