login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022136
Fibonacci sequence beginning 5, 11.
6
5, 11, 16, 27, 43, 70, 113, 183, 296, 479, 775, 1254, 2029, 3283, 5312, 8595, 13907, 22502, 36409, 58911, 95320, 154231, 249551, 403782, 653333, 1057115, 1710448, 2767563, 4478011, 7245574, 11723585, 18969159, 30692744, 49661903, 80354647, 130016550
OFFSET
0,1
COMMENTS
From Wajdi Maaloul, Jun 19 2022: (Start)
For n > 0, 2*a(n) is the number of ways to tile this strip of length n+1 (beginning with two vertical strips of length 3) using squares and dominoes.
._ _
|_|_|
|_|_|_______________ _
|_|_|_|_|_|_|_|_|_|_|...|_|
(End)
From Greg Dresden, Jun 26 2022: (Start)
For n > 0, 5*a(n) is the number of ways to tile this strip of length n (beginning with a long vertical strip of length 9) using squares and dominoes.
._
|_|
|_|
|_|
|_|_________________ _
|_|_|_|_|_|_|_|_|_|_|...|_|
|_|
|_|
|_|
|_|
(End)
FORMULA
G.f.: (5+6*x)/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 2*Lucas(n-1) + 7*Fibonacci(n+1). - Lechoslaw Ratajczak, May 01 2017
a(n) = Fibonacci(n+6) - Fibonacci(n+1) - Lucas(n). - Greg Dresden and Aamen Muharram, Jul 22 2022
MATHEMATICA
Transpose[NestList[{Last[#], Total[#]}&, {5, 11}, 40]][[1]] (* Harvey P. Dale, Apr 04 2011 *)
LinearRecurrence[{1, 1}, {5, 11}, 40] (* Vincenzo Librandi, May 03 2017 *)
CROSSREFS
Sequence in context: A314181 A314182 A035108 * A042385 A041046 A041117
KEYWORD
nonn,easy
STATUS
approved