login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators in expansion of a certain Dirichlet series.
0

%I #11 Oct 04 2019 10:47:51

%S 1,5,11,16,25,31,41,55,61,71,80,81,101,121,125,131,151,155,176,181,

%T 191,205,211,241,251,256,271,275,281,305,311,331,341,355,361,400,401,

%U 405,421,431,451,461,491,496,505,521,541,571,601,605,625,631,641,655,656

%N Denominators in expansion of a certain Dirichlet series.

%H M. Baake and R. V. Moody, <a href="http://www.math.uni-bielefeld.de/baake/ps/fields3.ps.gz">Similarity submodules and semigroups</a> in Quasicrystals and Discrete Geometry, ed. J. Patera, Fields Institute Monographs, vol. 10 AMS, Providence, RI (1998) pp. 1-13.

%H Ron Lifshitz, <a href="https://doi.org/10.1103/RevModPhys.69.1181">Theory of color symmetry for periodic and quasiperiodic crystals</a>, Rev. Mod. Phys. 69, 1181 (1997). See row N = 10 of Table VII.

%F (1-5^(-s))^(-1) * Product_{p == 1 mod 5} (1-p^(-s))^(-4) * Product_{p == 4 mod 5} (1-p^(-2s))^(-2) * Product_{p == +- 2 mod 5} (1-p^(-4s))^(-1).

%o (PARI) {an=vector(64); v=direuler(p=2,800,1/[1-X,(1-X)^4,1-X^4,1-X^4,(1-X^2)^2][p%5+1]); c=0; for(n=1,length(v),if(v[n],c++; an[c]=n)); print(an)}

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_