login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035107
First differences give (essentially) A028242.
3
3, 9, 17, 29, 44, 64, 88, 118, 153, 195, 243, 299, 362, 434, 514, 604, 703, 813, 933, 1065, 1208, 1364, 1532, 1714, 1909, 2119, 2343, 2583, 2838, 3110, 3398, 3704, 4027, 4369, 4729, 5109, 5508, 5928, 6368, 6830, 7313, 7819, 8347, 8899, 9474
OFFSET
0,1
FORMULA
a(n) = (4*n^3 +54*n^2 +212*n +153 -9*(-1)^n)/48.
G.f.: (2*x^3-4*x^2+3) / ((x-1)^4*(x+1)). - Colin Barker, Mar 04 2013
MATHEMATICA
LinearRecurrence[{3, -2, -2, 3, -1}, {3, 9, 17, 29, 44}, 50] (* Harvey P. Dale, Oct 20 2013 *)
CoefficientList[Series[(2 x^3 - 4 x^2 + 3)/((x - 1)^4 (x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 21 2013 *)
PROG
(Magma) [(4*n^3+54*n^2+212*n+153-9*(-1)^n)/48: n in [0..50]]; // Vincenzo Librandi, Oct 21 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved