login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First differences give (essentially) A028242.
3

%I #22 Sep 08 2022 08:44:52

%S 3,9,17,29,44,64,88,118,153,195,243,299,362,434,514,604,703,813,933,

%T 1065,1208,1364,1532,1714,1909,2119,2343,2583,2838,3110,3398,3704,

%U 4027,4369,4729,5109,5508,5928,6368,6830,7313,7819,8347,8899,9474

%N First differences give (essentially) A028242.

%H Vincenzo Librandi, <a href="/A035107/b035107.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1).

%F a(n) = (4*n^3 +54*n^2 +212*n +153 -9*(-1)^n)/48.

%F G.f.: (2*x^3-4*x^2+3) / ((x-1)^4*(x+1)). - _Colin Barker_, Mar 04 2013

%t LinearRecurrence[{3,-2,-2,3,-1},{3,9,17,29,44},50] (* _Harvey P. Dale_, Oct 20 2013 *)

%t CoefficientList[Series[(2 x^3 - 4 x^2 + 3)/((x - 1)^4 (x + 1)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Oct 21 2013 *)

%o (Magma) [(4*n^3+54*n^2+212*n+153-9*(-1)^n)/48: n in [0..50]]; // _Vincenzo Librandi_, Oct 21 2013

%Y Cf. A028242, A004652, A035104, A035106.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_.