login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035104
First differences give (essentially) A028242.
4
1, 4, 9, 13, 19, 24, 31, 37, 45, 52, 61, 69, 79, 88, 99, 109, 121, 132, 145, 157, 171, 184, 199, 213, 229, 244, 261, 277, 295, 312, 331, 349, 369, 388, 409, 429, 451, 472, 495, 517, 541, 564, 589, 613, 639, 664, 691, 717, 745, 772, 801, 829, 859, 888, 919
OFFSET
0,2
FORMULA
From Colin Barker, Mar 04 2013: (Start)
a(n) = (5+3*(-1)^n+28*n+2*n^2)/8.
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
G.f.: (3*x^3-x^2-2*x-1) / ((x-1)^3*(x+1)). (End)
Sum_{n>=0} 1/a(n) = 983/990 + tan(3*sqrt(5)*Pi/2)*Pi/(3*sqrt(5)) - cot(2*sqrt(3)*Pi)*Pi/(4*sqrt(3)). - Amiram Eldar, Sep 24 2022
MATHEMATICA
CoefficientList[Series[(3 x^3 - x^2 - 2 x - 1)/((x - 1)^3 (x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 20 2013 *)
PROG
(Magma) [(5+3*(-1)^n+28*n+2*n^2)/8: n in [0..60]]; // Vincenzo Librandi, Oct 20 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Oct 20 2013
STATUS
approved