Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 24 2022 05:48:09
%S 1,4,9,13,19,24,31,37,45,52,61,69,79,88,99,109,121,132,145,157,171,
%T 184,199,213,229,244,261,277,295,312,331,349,369,388,409,429,451,472,
%U 495,517,541,564,589,613,639,664,691,717,745,772,801,829,859,888,919
%N First differences give (essentially) A028242.
%H Vincenzo Librandi, <a href="/A035104/b035104.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).
%F From _Colin Barker_, Mar 04 2013: (Start)
%F a(n) = (5+3*(-1)^n+28*n+2*n^2)/8.
%F a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
%F G.f.: (3*x^3-x^2-2*x-1) / ((x-1)^3*(x+1)). (End)
%F Sum_{n>=0} 1/a(n) = 983/990 + tan(3*sqrt(5)*Pi/2)*Pi/(3*sqrt(5)) - cot(2*sqrt(3)*Pi)*Pi/(4*sqrt(3)). - _Amiram Eldar_, Sep 24 2022
%t CoefficientList[Series[(3 x^3 - x^2 - 2 x - 1)/((x - 1)^3 (x + 1)), {x, 0, 60}], x] (* _Vincenzo Librandi_, Oct 20 2013 *)
%o (Magma) [(5+3*(-1)^n+28*n+2*n^2)/8: n in [0..60]]; // _Vincenzo Librandi_, Oct 20 2013
%Y Cf. A004652, A035106, A035107.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.
%E More terms from _Vincenzo Librandi_, Oct 20 2013