

A035102


Composite binary rooted trees with external nodes.


3



0, 0, 1, 0, 4, 0, 9, 4, 28, 0, 98, 0, 264, 56, 869, 0, 3016, 0, 9822, 528, 33592, 0, 119530, 196, 416024, 5712, 1486724, 0, 5369336, 0, 19392637, 67184, 70715340, 3696, 259535958, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,5


COMMENTS

If a,b are binary trees, a.b is equal to tree b where a copy of a is put on each of b's external node. This is noncommutative but associative. A binary tree a is prime if it is different from the 1 node tree and if a=b.c implies that b or c is equal to the 1 node tree.


LINKS

Table of n, a(n) for n=2..37.
Index entries for sequences related to rooted trees


FORMULA

A035010(n)+A035102(n)=Catalan(n1)=A000108(n1).


MATHEMATICA

(* b = A035010 *) b[n_] := b[n] = CatalanNumber[n1]  Sum[If[Divisible[n, d1], d2 = n/d1; b[d1]*CatalanNumber[d21], 0], {d1, 2, n1}]; b[2] = 1; a[n_] := a[n] = CatalanNumber[n1]  b[n]; Table[a[n], {n, 2, 37}] (* JeanFrançois Alcover, Jul 17 2012, after formula *)


CROSSREFS

Cf. A035010.
Sequence in context: A338107 A100074 A330422 * A242015 A187507 A187857
Adjacent sequences: A035099 A035100 A035101 * A035103 A035104 A035105


KEYWORD

nonn


AUTHOR

Bernard AMERLYNCK (B.Amerlynck(AT)ulg.ac.be)


STATUS

approved



