login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A338107 Decimal expansion of Sum_{m>1, n>1} 1/(m^2*n^2+1). 1
4, 0, 9, 4, 4, 7, 9, 2, 4, 8, 9, 0, 7, 6, 0, 4, 0, 5, 7, 5, 3, 4, 1, 9, 0, 1, 2, 6, 9, 0, 2, 5, 3, 8, 5, 0, 3, 9, 5, 0, 6, 8, 3, 6, 6, 3, 8, 8, 3, 3, 8, 6, 3, 3, 3, 7, 0, 9, 7, 0, 1, 8, 2, 8, 0, 1, 7, 2, 8, 5, 3, 9, 7, 7, 8, 8, 1, 2, 5, 4, 8, 5, 1, 1, 5, 0, 7, 0, 6, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Double inequality: Sum_{m>1, n>1} 1/(m^2*n^2+1) = this constant = 0.409... < Sum_{m>1, n>1} 1/(m^2*n^2) = (zeta(2)-1)^2 = 0.415... < Sum_{m>1, n>1} 1/(m^2*n^2-1) = A338106 = 0.423...

REFERENCES

Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.25, p. 277.

LINKS

Table of n, a(n) for n=0..89.

FORMULA

Equals Sum_{k>0} (-1)^(k-1) * (zeta(2*k) - 1)^2.

Equals 3/2 - Pi*coth(Pi) + Sum_{k>=1} (Pi*coth(Pi/k)/(2*k) - 1/2). - Vaclav Kotesovec, Oct 14 2020

EXAMPLE

0.40944792489076040575341901269025385039506836638... (with help of Amiram Eldar).

MATHEMATICA

RealDigits[Sum[(-1)^(k - 1)*(Zeta[2*k] - 1)^2, {k, 1, 100}], 10, 90][[1]] (* Amiram Eldar, Oct 10 2020 *)

PROG

(PARI) sumalt(k=1, (-1)^(k-1) * (zeta(2*k) - 1)^2) \\ Michel Marcus, Oct 10 2020

CROSSREFS

Cf. A098198, A333972, A338106.

Sequence in context: A187046 A188777 A016683 * A100074 A330422 A035102

Adjacent sequences:  A338104 A338105 A338106 * A338108 A338109 A338110

KEYWORD

nonn,cons

AUTHOR

Bernard Schott, Oct 10 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 08:36 EST 2021. Contains 349543 sequences. (Running on oeis4.)