login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338106
Decimal expansion of Sum_{m>1, n>1} 1/(m^2*n^2-1).
1
4, 2, 3, 0, 3, 5, 5, 2, 5, 7, 6, 1, 3, 1, 3, 1, 5, 9, 7, 4, 2, 0, 9, 7, 1, 0, 1, 6, 3, 9, 1, 0, 3, 8, 6, 2, 8, 9, 9, 5, 4, 6, 4, 9, 7, 0, 7, 0, 2, 9, 1, 0, 7, 8, 9, 3, 5, 7, 5, 2, 3, 2, 5, 1, 6, 5, 5, 0, 4, 5, 9, 1, 2, 7, 0, 4, 5, 5, 3, 5, 4, 8, 0, 2, 4, 8, 1, 2
OFFSET
0,1
COMMENTS
For p>1, q>1 in R, Sum_{m >1, n>1} 1/(m^p*n^q-1) = Sum_{k>0} (zeta(k*p) - 1) * (zeta(k*q) - 1) [Proof in References]. This sequence corresponds to p = q = 2.
Double inequality: Sum_{m>1, n>1} 1/(m^2*n^2+1) = A338107 = 0.409... < Sum_{m>1, n>1} 1/(m^2*n^2) = (zeta(2)-1)^2 = 0.415... < Sum_{m>1, n>1} 1/(m^2*n^2-1) = this constant = 0.423...
REFERENCES
Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.25, p. 277.
FORMULA
Equals Sum_{k>0} (zeta(2*k) - 1)^2.
Equals -3/4 + Sum_{k>=2} (1/2 - Pi*cot(Pi/k)/(2*k)). - Vaclav Kotesovec, Oct 14 2020
EXAMPLE
0.4230355257613131597420971016391038628995464... (with help of Amiram Eldar).
MATHEMATICA
RealDigits[Sum[(Zeta[2*k] - 1)^2, {k, 1, 100}], 10, 90][[1]] (* Amiram Eldar, Oct 10 2020 *)
PROG
(PARI) sumpos(k=1, (zeta(2*k) - 1)^2) \\ Michel Marcus, Oct 10 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Oct 10 2020
STATUS
approved