login
A098198
Decimal expansion of Pi^4/36 = zeta(2)^2.
18
2, 7, 0, 5, 8, 0, 8, 0, 8, 4, 2, 7, 7, 8, 4, 5, 4, 7, 8, 7, 9, 0, 0, 0, 9, 2, 4, 1, 3, 5, 2, 9, 1, 9, 7, 5, 6, 9, 3, 6, 8, 7, 7, 3, 7, 9, 7, 9, 6, 8, 1, 7, 2, 6, 9, 2, 0, 7, 4, 4, 0, 5, 3, 8, 6, 1, 0, 3, 0, 1, 5, 4, 0, 4, 6, 7, 4, 2, 2, 1, 1, 6, 3, 9, 2, 2, 7, 4, 0, 8, 9, 8, 5, 4, 2, 4, 9, 7, 9, 3, 0, 8, 2, 4, 7
OFFSET
1,1
FORMULA
Decimal expansion of limit of q(n)= A024916(n)/A002088(n) = SummatorySigma / SummatoryTotient.
Equals Sum_{n>=1} A000005(n)/n^2. - R. J. Mathar, Dec 18 2010
Equals 10*Sum_{n>=2} (psi(n)+gamma)/n^3. - Jean-François Alcover, Feb 25 2013
EXAMPLE
2.70580808427784547879000924135291975693687737979... = 2*A152649 = A013661^2.
MATHEMATICA
RealDigits[N[Pi^4/36, 256]]
PROG
(PARI) zeta(2)^2 \\ Charles R Greathouse IV, Aug 08 2013
CROSSREFS
Sequence in context: A229178 A019667 A343049 * A021791 A378715 A325905
KEYWORD
cons,nonn
AUTHOR
Labos Elemer, Sep 21 2004
STATUS
approved