login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338108
Numbers that follow from the alternating series a(n) = d(1) - d(2) + d(3) - d(4) + ... + (-1)^(n+1) d(n), where d(k) denotes the k-th term of the digit sequence of Euler's number e.
2
2, -5, -4, -12, -10, -18, -17, -25, -23, -31, -27, -32, -23, -23, -19, -24, -22, -25, -20, -23, -17, -17, -15, -23, -16, -20, -13, -14, -11, -16, -14, -20, -14, -16, -12, -21, -14, -21, -16, -23, -21, -25, -18, -18, -9, -12, -6, -15, -6, -15, -10, -19, -14, -21
OFFSET
1,1
LINKS
FORMULA
a(1) = d(1) = 2; a(n) = a(n-1) + (-1)^(n+1) d(n) for n > 1.
EXAMPLE
a(3) = d(1) - d(2) + d(3) = 2 - 7 + 1 = -4.
MATHEMATICA
S[X_, n_] :=
Module[{f},
f[1] = First[RealDigits[ X, 10, 1]][[1]];
f[i_] :=
f[i] = (-1)^(i + 1) First[RealDigits[ X, 10, i]][[i]] + f[i - 1];
Table[f[m], {m, 1, n}]
]
S[E, 20] (* Generates the first 20 elements of the series *)
Accumulate[Times@@@Partition[Riffle[RealDigits[E, 10, 100][[1]], {1, -1}], 2]] (* Harvey P. Dale, May 08 2021 *)
CROSSREFS
Cf. A001113 (e), A069159 (similar for Pi).
Sequence in context: A094471 A362418 A329372 * A291650 A285292 A346595
KEYWORD
base,easy,sign
AUTHOR
Dirk Broeders, Oct 10 2020
STATUS
approved