login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188777
T(n,k)=Number of n-turn bishop's tours on a kXk board summed over all starting positions
7
1, 4, 0, 9, 4, 0, 16, 20, 0, 0, 25, 56, 28, 0, 0, 36, 120, 152, 24, 0, 0, 49, 220, 488, 328, 8, 0, 0, 64, 364, 1192, 1720, 584, 0, 0, 0, 81, 560, 2468, 5816, 5464, 840, 0, 0, 0, 100, 816, 4560, 15424, 26360, 15824, 784, 0, 0, 0, 121, 1140, 7760, 34736, 91120, 112680, 40496
OFFSET
1,2
COMMENTS
Table starts
.1.4..9..16.....25......36.......49.......64.......81......100.....121....144
.0.4.20..56....120.....220......364......560......816.....1140....1540...2024
.0.0.28.152....488....1192.....2468.....4560.....7760....12400...18860..27560
.0.0.24.328...1720....5816....15424....34736....69776...128528..221448.361528
.0.0..8.584...5464...26360....91120...252720...603696..1288592.2525400
.0.0..0.840..15824..112680...516160..1778608..5082912.12622640
.0.0..0.784..40496..451104..2803552.12139552.41792672
.0.0..0.384..88264.1665344.14497784.80088992
.0.0..0...0.159704.5607456
.0.0..0...0.229296
LINKS
FORMULA
Empirical: T(1,k) = k^2
Empirical: T(2,k) = (4/3)*k^3 - 2*k^2 + (2/3)*k
Empirical: T(3,k) = 4*T(3,k-1)-5*T(3,k-2)+5*T(3,k-4)-4*T(3,k-5)+T(3,k-6)
Empirical: T(4,k) = 4*T(4,k-1)-4*T(4,k-2)-4*T(4,k-3)+10*T(4,k-4)-4*T(4,k-5)-4*T(4,k-6)+4*T(4,k-7)-T(4,k-8)
Empirical: T(5,k) = 4*T(5,k-1)-3*T(5,k-2)-8*T(5,k-3)+14*T(5,k-4)-14*T(5,k-6)+8*T(5,k-7)+3*T(5,k-8)-4*T(5,k-9)+T(5,k-10)
Empirical: T(6,k) = 4*T(6,k-1)-2*T(6,k-2)-12*T(6,k-3)+17*T(6,k-4)+8*T(6,k-5)-28*T(6,k-6)+8*T(6,k-7)+17*T(6,k-8)-12*T(6,k-9)-2*T(6,k-10)+4*T(6,k-11)-T(6,k-12)
EXAMPLE
Some n=4 solutions for 4X4
..0..0..0..0....0..4..0..1....0..0..0..4....3..0..0..0....0..1..0..0
..0..3..0..0....0..0..3..0....0..0..0..0....0..2..0..0....4..0..2..0
..2..0..4..0....0..2..0..0....0..3..0..1....0..0..4..0....0..3..0..0
..0..1..0..0....0..0..0..0....0..0..2..0....0..0..0..1....0..0..0..0
CROSSREFS
Row 2 is A002492(n-1)
Sequence in context: A187155 A187296 A187046 * A016683 A338107 A100074
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Apr 10 2011
STATUS
approved