login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242015
Decimal expansion of the Euler-Kronecker constant (as named by P. Moree) for non-hypotenuse numbers.
0
4, 0, 9, 5, 0, 6, 9, 0, 3, 4, 1, 1, 8, 9, 5, 7, 6, 8, 2, 4, 5, 1, 1, 6, 3, 9, 5, 1, 8, 3, 7, 9, 7, 6, 3, 7, 0, 4, 3, 1, 9, 9, 5, 2, 9, 0, 9, 8, 4, 7, 1, 6, 6, 3, 2, 3, 4, 8, 9, 0, 9, 7, 6, 6, 8, 2, 7, 2, 5, 6, 9, 2, 7, 8, 0, 6, 3, 7, 6, 8, 8, 9, 2, 1, 2, 7, 2, 9, 8, 5, 0, 7, 0, 4, 4, 6, 0, 5, 2, 8, 7, 7, 5
OFFSET
0,1
COMMENTS
130000 digits are available for this constant and the related one A244662; for links to the Languasco et al. article and the corresponding programs see A242013. - Alessandro Languasco, Apr 25 2024
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constants, p. 99.
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2022, p. 11.
Pieter Moree, Counting numbers in multiplicative sets: Landau versus Ramanujan, arXiv:1110.0708v1 [math.NT], 4 Oct 2011, p. 13.
Daniel Shanks, The second-order term in the asymptotic expansion of B(x), Mathematics of Computation 18 (1964), pp. 75-86.
Eric Weisstein's World of Mathematics, Landau-Ramanujan Constant.
FORMULA
Equals 1 - 2*A244662.
EXAMPLE
-0.40950690341189576824511639518379763704319952909847166323489...
MATHEMATICA
digits = 103; m0 = 5; dm = 5; beta[x_] := 1/4^x*(Zeta[x, 1/4] - Zeta[x, 3/4]); L = Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2; Clear[f]; f[m_] := f[m] = 1/2*(1 - Log[Pi*E^EulerGamma/(2*L)]) - 1/4*NSum[Zeta'[2^k]/Zeta[2^k] - beta'[2^k]/beta[2^k] + Log[2]/(2^(2^k) - 1), {k, 1, m}, WorkingPrecision -> digits + 10]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits] != RealDigits[f[m - dm], 10, digits], m = m + dm]; RealDigits[1 - 2*f[m] - EulerGamma + Log[Pi] - 4*Log[Gamma[3/4]], 10, digits] // First
CROSSREFS
Sequence in context: A100074 A330422 A035102 * A187507 A187857 A215499
KEYWORD
nonn,cons
AUTHOR
STATUS
approved