OFFSET
0,1
COMMENTS
130000 digits are available for this constant and the related one A244662; for links to the Languasco et al. article and the corresponding programs see A242013. - Alessandro Languasco, Apr 25 2024
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constants, p. 99.
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2022, p. 11.
Pieter Moree, Counting numbers in multiplicative sets: Landau versus Ramanujan, arXiv:1110.0708v1 [math.NT], 4 Oct 2011, p. 13.
Daniel Shanks, The second-order term in the asymptotic expansion of B(x), Mathematics of Computation 18 (1964), pp. 75-86.
Eric Weisstein's World of Mathematics, Landau-Ramanujan Constant.
FORMULA
Equals 1 - 2*A244662.
EXAMPLE
-0.40950690341189576824511639518379763704319952909847166323489...
MATHEMATICA
digits = 103; m0 = 5; dm = 5; beta[x_] := 1/4^x*(Zeta[x, 1/4] - Zeta[x, 3/4]); L = Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2; Clear[f]; f[m_] := f[m] = 1/2*(1 - Log[Pi*E^EulerGamma/(2*L)]) - 1/4*NSum[Zeta'[2^k]/Zeta[2^k] - beta'[2^k]/beta[2^k] + Log[2]/(2^(2^k) - 1), {k, 1, m}, WorkingPrecision -> digits + 10]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits] != RealDigits[f[m - dm], 10, digits], m = m + dm]; RealDigits[1 - 2*f[m] - EulerGamma + Log[Pi] - 4*Log[Gamma[3/4]], 10, digits] // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Aug 11 2014
STATUS
approved