login
A244662
Decimal expansion of 'C' (as designated by D. Shanks), a constant appearing in the second order term of the asymptotic expansion of the number of non-hypotenuse numbers not exceeding a given bound.
2
7, 0, 4, 7, 5, 3, 4, 5, 1, 7, 0, 5, 9, 4, 7, 8, 8, 4, 1, 2, 2, 5, 5, 8, 1, 9, 7, 5, 9, 1, 8, 9, 8, 8, 1, 8, 5, 2, 1, 5, 9, 9, 7, 6, 4, 5, 4, 9, 2, 3, 5, 8, 3, 1, 6, 1, 7, 4, 4, 5, 4, 8, 8, 3, 4, 1, 3, 6, 2, 8, 4, 6, 3, 9, 0, 3, 1, 8, 8, 4, 4, 4, 6, 0, 6, 3, 6, 4, 9, 2, 5, 3, 5, 2, 2, 3, 0, 2, 6, 4
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, 2.3 Landau-Ramanujan Constant, p. 101.
LINKS
Daniel Shanks, The second-order term in the asymptotic expansion of B(x), Mathematics of Computation, Vol. 18 (1964), pp. 75-86.
Daniel Shanks, Non-hypotenuse Numbers, Fib. Quart., 13:4 (1975), pp. 319-321.
Eric Weisstein's MathWorld, Lemniscate Constant
FORMULA
C = c + 1/2*log((Pi/L)^2*exp(gamma)/2), where c is A227158 and L the Lemniscate constant A062539.
EXAMPLE
0.70475345170594788412255819759189881852...
MATHEMATICA
digits = 100; m0 = 5; dm = 5; beta[x_] := 1/4^x*(Zeta[x, 1/4] - Zeta[x, 3/4]); L = Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2; Clear[f]; f[m_] := f[m] = 1/2*(1 - Log[Pi*E^EulerGamma/(2*L)]) - 1/4*NSum[Zeta'[2^k]/Zeta[2^k] - beta'[2^k]/beta[2^k] + Log[2]/(2^(2^k) - 1), {k, 1, m}, WorkingPrecision -> digits + 10]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits] != RealDigits[f[m - dm], 10, digits], m = m + dm]; c = A227158 = f[m]; c + 1/2 Log[(Pi/L)^2*Exp[EulerGamma]/2] // RealDigits[#, 10, digits] & // First
CROSSREFS
Cf. A009003, A004144, A062539, A227158, A244659 (first order term).
Sequence in context: A374776 A177156 A016582 * A060708 A021997 A099737
KEYWORD
nonn,cons
AUTHOR
STATUS
approved