login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244663
Binary representation of 4^n + 2^(n+1) - 1.
2
111, 10111, 1001111, 100011111, 10000111111, 1000001111111, 100000011111111, 10000000111111111, 1000000001111111111, 100000000011111111111, 10000000000111111111111, 1000000000001111111111111, 100000000000011111111111111, 10000000000000111111111111111
OFFSET
1,1
FORMULA
a(n) = -1/9+10^(1+n)/9+100^n.
a(n) = 111*a(n-1)-1110*a(n-2)+1000*a(n-3).
G.f.: -x*(2000*x^2-2210*x+111) / ((x-1)*(10*x-1)*(100*x-1)).
EXAMPLE
a(3) is 1001111 because A093069(3) = 79 which is 1001111 in base 2.
MAPLE
A244663:=n->-1/9+10^(1+n)/9+100^n: seq(A244663(n), n=1..15); # Wesley Ivan Hurt, Jul 09 2014
MATHEMATICA
Table[-1/9 + 10^(1 + n)/9 + 100^n, {n, 15}] (* Wesley Ivan Hurt, Jul 09 2014 *)
LinearRecurrence[{111, -1110, 1000}, {111, 10111, 1001111}, 20] (* Harvey P. Dale, Dec 11 2014 *)
PROG
(PARI) vector(100, n, -1/9+10^(1+n)/9+100^n)
(PARI) Vec(-x*(2000*x^2-2210*x+111)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100))
(Magma) [-1/9 + 10^(1 + n)/9 + 100^n : n in [1..15]]; // Wesley Ivan Hurt, Jul 09 2014
CROSSREFS
Cf. A093069.
Sequence in context: A153498 A118110 A267608 * A267804 A267925 A286504
KEYWORD
nonn,easy,base
AUTHOR
Colin Barker, Jul 08 2014
STATUS
approved