login
A244665
Decimal expansion of sum_(n>=1) (H(n,3)/n^3) where H(n,3) = A007408(n)/A007409(n) is the n-th harmonic number of order 3.
2
1, 2, 3, 1, 1, 4, 1, 9, 3, 0, 2, 0, 9, 0, 4, 1, 6, 8, 6, 8, 1, 4, 1, 0, 1, 5, 0, 4, 2, 9, 8, 9, 5, 4, 1, 7, 7, 5, 4, 2, 7, 7, 6, 4, 4, 7, 8, 9, 8, 3, 7, 1, 1, 1, 7, 9, 8, 6, 9, 2, 1, 4, 1, 2, 9, 5, 1, 4, 5, 8, 0, 1, 9, 5, 1, 6, 6, 5, 5, 9, 9, 9, 9, 2, 4, 4, 8, 3, 5, 3, 8, 2, 2, 8, 5, 2, 6, 3, 2, 5, 5, 9, 5
OFFSET
1,2
LINKS
Philippe Flajolet, Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics 7:1 (1998) page 23.
FORMULA
zeta(3)^2/2 + Pi^6/1890.
EXAMPLE
1.2311419302090416868141015042989541775427764478983711179869214129514580195...
MATHEMATICA
RealDigits[1/2*Zeta[3]^2 + 1/2*Zeta[6], 10, 103] // First
PROG
(PARI) zeta(3)^2/2 + Pi^6/1890 \\ Michel Marcus, Jul 04 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved