login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244661
Beastly reciprocals, or numbers n such that digitsum(1/n) = 666.
1
149, 298, 596, 646, 745, 1192, 1490, 1615, 2119, 2584, 2980, 3109, 3725, 3878, 5960, 6218, 6357, 6460, 7106, 7294, 7450, 8476, 9262, 9868, 10941, 11627, 11634, 11920, 12436, 14535, 14900, 15049, 15545, 16150, 18625, 21190, 22718, 23256, 23902, 24872, 24915
OFFSET
1,1
COMMENTS
149 is a full reptend prime (see A001913), hence the sum of the decimal digits of 1/149 is 9 * 148 / 2 = 666.
From Robert G. Wilson v, Aug 16 2014: (Start)
If n is present, so is 10n.
If n is present then A003592*n is possibly present.
Primitives are: 149, 646, 1615, 2119, 3109, 3878, 7294, 9262, 9868, 10941, …, .
Palindromes: 646, 1525251, 2062602, …, .
Primes: 149, 3109, 111149, 351391, …, .
(End)
LINKS
EXAMPLE
If digitsum(1/n) sums the decimal digits of 1/n up to the point at which they recur or terminate, then digitsum(1/149) = 666 = 0 + 0 + 6 + 7 + 1 + 1 + 4 + 0 + 9 + 3 + 9 + 5 + 9 + 7 + 3 + 1 + 5 + 4 + 3 + 6 + 2 + 4 + 1 + 6 + 1 + 0 + 7 + 3 + 8 + 2 + 5 + 5 + 0 + 3 + 3 + 5 + 5 + 7 + 0 + 4 + 6 + 9 + 7 + 9 + 8 + 6 + 5 + 7 + 7 + 1 + 8 + 1 + 2 + 0 + 8 + 0 + 5 + 3 + 6 + 9 + 1 + 2 + 7 + 5 + 1 + 6 + 7 + 7 + 8 + 5 + 2 + 3 + 4 + 8 + 9 + 9 + 3 + 2 + 8 + 8 + 5 + 9 + 0 + 6 + 0 + 4 + 0 + 2 + 6 + 8 + 4 + 5 + 6 + 3 + 7 + 5 + 8 + 3 + 8 + 9 + 2 + 6 + 1 + 7 + 4 + 4 + 9 + 6 + 6 + 4 + 4 + 2 + 9 + 5 + 3 + 0 + 2 + 0 + 1 + 3 + 4 + 2 + 2 + 8 + 1 + 8 + 7 + 9 + 1 + 9 + 4 + 6 + 3 + 0 + 8 + 7 + 2 + 4 + 8 + 3 + 2 + 2 + 1 + 4 + 7 + 6 + 5 + 1.
MATHEMATICA
fQ[n_] := Total[ RealDigits[ 1/n, 10][[1, 1]]] == 666; Select[ Range@ 25000, fQ ] (* Robert G. Wilson v, Aug 16 2014 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Anthony Sand, Jul 04 2014
STATUS
approved