OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.3 and 6.2, pp. 99, 420.
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..5000
Simon Plouffe, Lemniscate or Gauss constant.
Simon Plouffe, Lemniscate constant or Gauss constant.
Eric Weisstein's World of Mathematics, Lemniscate Constant.
Wikipedia, Lemniscate constant.
FORMULA
Equals (1/2)*sqrt(2*Pi^3)/Gamma(3/4)^2.
From Martin Renner, Aug 16 2019: (Start)
Equals 2*Integral_{x=0..1} 1/sqrt(1-x^4) dx.
Equals 1/2*B(1/4,1/2) with Beta function B(x,y) = Gamma(x)*Gamma(y)/Gamma(x+y). (End)
Equals Pi/AGM(1, sqrt(2)). - Jean-François Alcover, Feb 28 2021
Equals 2*hypergeom([1/2, 1/4], [5/4], 1). - Peter Bala, Mar 02 2022
Equals Pi*A014549. - Hugo Pfoertner, Jun 28 2024
Equals Integral_{x=0..Pi} 1/sqrt(1 + sin(x)^2) dx = EllipticK(-1) (see Finch at p. 420). - Stefano Spezia, Dec 15 2024
EXAMPLE
2.622057554292119810464839589891119413682754951431623162816821703...
MAPLE
evalf((1/2)*sqrt(2*Pi^3)/GAMMA(3/4)^2, 120); # Muniru A Asiru, Oct 08 2018
evalf(1/2*GAMMA(1/4)*GAMMA(1/2)/GAMMA(3/4), 120); # Martin Renner, Aug 16 2019
evalf(1/2*Beta(1/4, 1/2), 120); # Martin Renner, Aug 16 2019
evalf(2*int(1/sqrt(1-x^4), x=0..1), 120); # Martin Renner, Aug 16 2019
MATHEMATICA
RealDigits[Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2, 10, 111][[1]] (* Robert G. Wilson v, May 19 2004 *)
PROG
(PARI) print(1/2*Pi^(3/2)/gamma(3/4)^2*2^(1/2))
(PARI) allocatemem(932245000); default(realprecision, 5080); x=Pi^(3/2)*sqrt(2)/(2*gamma(3/4)^2); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062539.txt", n, " ", d)); \\ Harry J. Smith, Jun 20 2009
(PARI) Pi/agm(1, sqrt(2)) \\ Charles R Greathouse IV, Feb 04 2015
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (1/2)*Sqrt(2*Pi(R)^3)/Gamma(3/4)^2; // G. C. Greubel, Oct 07 2018
CROSSREFS
KEYWORD
AUTHOR
Jason Earls, Jun 25 2001
STATUS
approved