|
|
A062539
|
|
Decimal expansion of the Lemniscate constant or Gauss's constant.
|
|
22
|
|
|
2, 6, 2, 2, 0, 5, 7, 5, 5, 4, 2, 9, 2, 1, 1, 9, 8, 1, 0, 4, 6, 4, 8, 3, 9, 5, 8, 9, 8, 9, 1, 1, 1, 9, 4, 1, 3, 6, 8, 2, 7, 5, 4, 9, 5, 1, 4, 3, 1, 6, 2, 3, 1, 6, 2, 8, 1, 6, 8, 2, 1, 7, 0, 3, 8, 0, 0, 7, 9, 0, 5, 8, 7, 0, 7, 0, 4, 1, 4, 2, 5, 0, 2, 3, 0, 2, 9, 5, 5, 3, 2, 9, 6, 1, 4, 2, 9, 0, 9, 3, 4, 4, 6, 1, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Equals (1/2)*sqrt(2*Pi^3)/Gamma(3/4)^2.
Equals 2*Integral_{x=0..1} 1/sqrt(1-x^4) dx.
Equals 1/2*B(1/4,1/2) with Beta function B(x,y) = Gamma(x)*Gamma(y)/Gamma(x+y). (End)
Equals 2*hypergeom([1/2, 1/4], [5/4], 1). - Peter Bala, Mar 02 2022
|
|
EXAMPLE
|
2.622057554292119810464839589891119413682754951431623162816821703...
|
|
MAPLE
|
evalf((1/2)*sqrt(2*Pi^3)/GAMMA(3/4)^2, 120); # Muniru A Asiru, Oct 08 2018
evalf(1/2*GAMMA(1/4)*GAMMA(1/2)/GAMMA(3/4), 120); # Martin Renner, Aug 16 2019
evalf(2*int(1/sqrt(1-x^4), x=0..1), 120); # Martin Renner, Aug 16 2019
|
|
MATHEMATICA
|
RealDigits[Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2, 10, 111][[1]] (* Robert G. Wilson v, May 19 2004 *)
|
|
PROG
|
(PARI) print(1/2*Pi^(3/2)/gamma(3/4)^2*2^(1/2))
(PARI) allocatemem(932245000); default(realprecision, 5080); x=Pi^(3/2)*sqrt(2)/(2*gamma(3/4)^2); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062539.txt", n, " ", d)); \\ Harry J. Smith, Jun 20 2009
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (1/2)*Sqrt(2*Pi(R)^3)/Gamma(3/4)^2; // G. C. Greubel, Oct 07 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|