login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062539 Decimal expansion of the Lemniscate constant or Gauss's constant. 16
2, 6, 2, 2, 0, 5, 7, 5, 5, 4, 2, 9, 2, 1, 1, 9, 8, 1, 0, 4, 6, 4, 8, 3, 9, 5, 8, 9, 8, 9, 1, 1, 1, 9, 4, 1, 3, 6, 8, 2, 7, 5, 4, 9, 5, 1, 4, 3, 1, 6, 2, 3, 1, 6, 2, 8, 1, 6, 8, 2, 1, 7, 0, 3, 8, 0, 0, 7, 9, 0, 5, 8, 7, 0, 7, 0, 4, 1, 4, 2, 5, 0, 2, 3, 0, 2, 9, 5, 5, 3, 2, 9, 6, 1, 4, 2, 9, 0, 9, 3, 4, 4, 6, 1, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Harry J. Smith, Table of n, a(n) for n=1..5000

Simon Plouffe, Lemniscate or Gauss constant

Simon Plouffe, Lemniscate constant or Gauss constant

Eric Weisstein's World of Mathematics, Lemniscate Constant

FORMULA

1/2*Pi^(3/2)/GAMMA(3/4)^2*2^(1/2).

A093341 multiplied by A002193. - R. J. Mathar, Aug 28 2013

EXAMPLE

2.622057554292119810464839589891119413682754951431623162816821703...

MATHEMATICA

RealDigits[Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2, 10, 111][[1]] (* Robert G. Wilson v, May 19 2004 *)

PROG

(PARI) print(1/2*Pi^(3/2)/gamma(3/4)^2*2^(1/2))

(PARI) allocatemem(932245000); default(realprecision, 5080); x=Pi^(3/2)*sqrt(2)/(2*gamma(3/4)^2); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062539.txt", n, " ", d)); \\ Harry J. Smith, Jun 20 2009

(PARI) Pi/agm(1, sqrt(2)) \\ Charles R Greathouse IV, Feb 04 2015

CROSSREFS

Cf. A062540, A064853.

Sequence in context: A136760 A303335 A289382 * A064136 A171898 A110218

Adjacent sequences:  A062536 A062537 A062538 * A062540 A062541 A062542

KEYWORD

cons,easy,nonn

AUTHOR

Jason Earls, Jun 25 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 20:05 EDT 2018. Contains 313837 sequences. (Running on oeis4.)