login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004144 Nonhypotenuse numbers (indices of positive squares that are not the sums of 2 distinct nonzero squares).
(Formerly M0542)
44
1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 19, 21, 22, 23, 24, 27, 28, 31, 32, 33, 36, 38, 42, 43, 44, 46, 47, 48, 49, 54, 56, 57, 59, 62, 63, 64, 66, 67, 69, 71, 72, 76, 77, 79, 81, 83, 84, 86, 88, 92, 93, 94, 96, 98, 99, 103, 107, 108, 112, 114, 118, 121, 124, 126, 127 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Also numbers with no prime factors of form 4*k+1.
m is a term iff A072438(m) = m.
Density 0. - Charles R Greathouse IV, Apr 16 2012
Closed under multiplication. Primitive elements are A045326, 2 and the primes of form 4*k+3. - Jean-Christophe Hervé, Nov 17 2013
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Evan M. Bailey, Table of n, a(n) for n = 1..20000 (Terms 1..1000 from T. D. Noe)
Evan M. Bailey, a004144.cpp.
Steven R. Finch, Landau-Ramanujan Constant [Broken link]
Steven R. Finch, Landau-Ramanujan Constant [From the Wayback machine]
Daniel Shanks, Non-hypotenuse numbers, Fib. Quart., Vol. 13, No. 4 (1975), pp. 319-321.
Eric Weisstein's World of Mathematics, Pythagorean Triple.
FORMULA
A005089(a(n)) = 0. - Reinhard Zumkeller, Jan 07 2013
The number of terms below x is ~ (A * x / sqrt(log(x))) * (1 + C/log(x) + O(1/log(x)^2)), where A = A244659 and C = A244662 (Shanks, 1975). - Amiram Eldar, Jan 29 2022
MATHEMATICA
fQ[n_] := If[n > 1, First@ Union@ Mod[ First@# & /@ FactorInteger@ n, 4] != 1, True]; Select[ Range@ 127, fQ]
A004144 = Select[Range[127], Length@Reduce[s^2 + t^2 == s # && s > t > 0, Integers] == 0 &] (* Gerry Martens, Jun 09 2020 *)
PROG
(PARI) is(n)=n==1||vecmin(factor(n)[, 1]%4)>1 \\ Charles R Greathouse IV, Apr 16 2012
(PARI) list(lim)=my(v=List(), u=vectorsmall(lim\=1)); forprimestep(p=5, lim, 4, forstep(n=p, lim, p, u[n]=1)); for(i=1, lim, if(u[i]==0, listput(v, i))); u=0; Vec(v) \\ Charles R Greathouse IV, Jan 13 2022
(Haskell)
import Data.List (elemIndices)
a004144 n = a004144_list !! (n-1)
a004144_list = map (+ 1) $ elemIndices 0 a005089_list
-- Reinhard Zumkeller, Jan 07 2013
CROSSREFS
Complement of A009003.
The subsequence of primes is A045326.
Sequence in context: A209921 A268377 A201010 * A356930 A124391 A200381
KEYWORD
nonn,changed
AUTHOR
EXTENSIONS
More terms from Reinhard Zumkeller, Jun 17 2002
Name clarified by Evan M. Bailey, Sep 17 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 16:21 EDT 2024. Contains 374552 sequences. (Running on oeis4.)