login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045326
Primes congruent to {2, 3} mod 4.
16
2, 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 563, 571, 587, 599, 607, 619
OFFSET
1,1
COMMENTS
Apart from initial term 2, same as A002145 (primes of the form 4k+3).
Primes not in A002144. - Juri-Stepan Gerasimov, Oct 16 2010
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi)
FORMULA
a(n) ~ 2n log n. - Charles R Greathouse IV, Dec 11 2016
MATHEMATICA
Select[Prime[Range[120]], MemberQ[{2, 3}, Mod[#, 4]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(740) | p mod 4 in [2, 3]] // Vincenzo Librandi, Dec 18 2010
(PARI) is(n)=n%4>1 && isprime(n) \\ Charles R Greathouse IV, Dec 11 2016
(Python)
from itertools import count, islice
from sympy import prime
def A045326_gen(): # generator of terms
return filter(lambda n:n>>1&1, map(prime, count(1)))
A045326_list = list(islice(A045326_gen(), 20)) # Chai Wah Wu, Jun 23 2023
CROSSREFS
Sequence in context: A108541 A038937 A092940 * A214029 A195602 A105897
KEYWORD
nonn,easy
STATUS
approved