login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes congruent to {2, 3} mod 4.
16

%I #40 Jun 23 2023 10:03:21

%S 2,3,7,11,19,23,31,43,47,59,67,71,79,83,103,107,127,131,139,151,163,

%T 167,179,191,199,211,223,227,239,251,263,271,283,307,311,331,347,359,

%U 367,379,383,419,431,439,443,463,467,479,487,491,499,503,523,547,563,571,587,599,607,619

%N Primes congruent to {2, 3} mod 4.

%C Apart from initial term 2, same as A002145 (primes of the form 4k+3).

%C Primes not in A002144. - _Juri-Stepan Gerasimov_, Oct 16 2010

%H Ray Chandler, <a href="/A045326/b045326.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Vincenzo Librandi)

%F a(n) ~ 2n log n. - _Charles R Greathouse IV_, Dec 11 2016

%t Select[Prime[Range[120]], MemberQ[{2, 3}, Mod[#, 4]] &] (* _Vladimir Joseph Stephan Orlovsky_, Feb 18 2012 *)

%o (Magma) [p: p in PrimesUpTo(740) | p mod 4 in [2,3]] // _Vincenzo Librandi_, Dec 18 2010

%o (PARI) is(n)=n%4>1 && isprime(n) \\ _Charles R Greathouse IV_, Dec 11 2016

%o (Python)

%o from itertools import count, islice

%o from sympy import prime

%o def A045326_gen(): # generator of terms

%o return filter(lambda n:n>>1&1,map(prime,count(1)))

%o A045326_list = list(islice(A045326_gen(),20)) # _Chai Wah Wu_, Jun 23 2023

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_