OFFSET
1,2
COMMENTS
Maximum in the row n-1 of the absolute values of the triangle A127674. - R. J. Mathar, Jul 15 2015
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. W. Kammler and R. J. McGlinn, Local conditioning of parametric forms used to approximate continuous functions, Amer. Math. Monthly, 86 (1979), 841-845.
D. W. Kammler and R. J. McGlinn, Local conditioning of parametric forms used to approximate continuous functions, Amer. Math. Monthly, 86 (1979), 841-845. [Annotated scan of page 843 only]
FORMULA
The scanned page from Kammler and McGlinn (page 843 of the article) gives a fairly explicit way to calculate a(n). - N. J. A. Sloane, Jul 09 2015
MAPLE
A := proc(n, k)
2*n/(n+k)*binomial(n+k, n-k)*2^(2*k-1) ;
end proc:
A004141 := proc(n)
seq(abs(A(n, k)), k=0..n-1) ;
max(%) ;
end proc:
seq(A004141(n), n=1..30) ; # R. J. Mathar, Jul 15 2015
MATHEMATICA
A[n_, k_] := 2n/(n+k) Binomial[n+k, n-k] 2^(2k-1);
row[n_] := Table[A[n, k], {k, 0, n-1}] // Abs;
a[n_] := If[n < 3, n, row[n-1] // Max];
Array[a, 30] (* Jean-François Alcover, Mar 30 2020, from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved