login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004141
Norm of a matrix.
(Formerly M1876)
2
1, 2, 8, 48, 256, 1280, 6912, 39424, 212992, 1118208, 6553600, 36765696, 199229440, 1133117440, 6499598336, 36175872000, 200655503360, 1167945891840, 6620826304512, 36681168191488, 212364657950720, 1219998345330688, 6864598984556544, 38958828003262464, 226089827240509440, 1287455960675123200
OFFSET
1,2
COMMENTS
Maximum in the row n-1 of the absolute values of the triangle A127674. - R. J. Mathar, Jul 15 2015
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. W. Kammler and R. J. McGlinn, Local conditioning of parametric forms used to approximate continuous functions, Amer. Math. Monthly, 86 (1979), 841-845.
D. W. Kammler and R. J. McGlinn, Local conditioning of parametric forms used to approximate continuous functions, Amer. Math. Monthly, 86 (1979), 841-845. [Annotated scan of page 843 only]
FORMULA
The scanned page from Kammler and McGlinn (page 843 of the article) gives a fairly explicit way to calculate a(n). - N. J. A. Sloane, Jul 09 2015
MAPLE
A := proc(n, k)
2*n/(n+k)*binomial(n+k, n-k)*2^(2*k-1) ;
end proc:
A004141 := proc(n)
seq(abs(A(n, k)), k=0..n-1) ;
max(%) ;
end proc:
seq(A004141(n), n=1..30) ; # R. J. Mathar, Jul 15 2015
MATHEMATICA
A[n_, k_] := 2n/(n+k) Binomial[n+k, n-k] 2^(2k-1);
row[n_] := Table[A[n, k], {k, 0, n-1}] // Abs;
a[n_] := If[n < 3, n, row[n-1] // Max];
Array[a, 30] (* Jean-François Alcover, Mar 30 2020, from Maple *)
CROSSREFS
Cf. A259868.
Sequence in context: A356346 A292277 A173841 * A009693 A192251 A104190
KEYWORD
nonn
STATUS
approved