login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292277
a(n) = 2^n*F(n)*F(n+1), where F = A000045.
2
0, 2, 8, 48, 240, 1280, 6656, 34944, 182784, 957440, 5012480, 26247168, 137428992, 719593472, 3767828480, 19728629760, 103300399104, 540888006656, 2832126181376, 14829205585920, 77646727741440, 406563546202112, 2128794362052608, 11146511995895808
OFFSET
0,2
LINKS
R. S. Melham, Closed Forms for Finite Sums of Weighted Products of Generalized Fibonacci Numbers, The Fibonacci Quarterly 55 (May 2017), Number 2, pages 99-104.
FORMULA
G.f.: 2*x/((1 + 2*x)*(1 - 6*x + 4*x^2)).
a(n) = 4*a(n-1) + 8*a(n-2) - 8*a(n-3).
a(n) = ((1+sqrt(5))^(2*n+1) + (1-sqrt(5))^(2*n+1))/(10*2^n) - (-2)^n/5, therefore 5*a(n) + (-2)^n = A082762(n). - Bruno Berselli, Sep 13 2017
MATHEMATICA
Table[2^n Fibonacci[n] Fibonacci[n+1], {n, 0, 40}]
Table[((1 + Sqrt[5])^(2 n + 1) + (1 - Sqrt[5])^(2 n + 1))/(10 2^n) - (-2)^n/5, {n, 0, 30}] (* Bruno Berselli, Sep 13 2017 *)
PROG
(Magma) [2^n*Fibonacci(n)*Fibonacci(n+1): n in [0..30]];
(PARI) a(n) = 2^n*fibonacci(n)*fibonacci(n+1); \\ Altug Alkan, Sep 13 2017
(Sage) [2^n*fibonacci(n)*fibonacci(n+1) for n in range(30)] # Bruno Berselli, Sep 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 13 2017
STATUS
approved