login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209454
a(n) = Pell(n)*A033719(n) for n>=1, with a(0)=1, where A033719 lists the coefficients in theta_3(q)*theta_3(q^7).
4
1, 2, 0, 0, 24, 0, 0, 338, 1632, 1970, 0, 22964, 0, 0, 0, 0, 2824992, 0, 0, 0, 0, 0, 0, 900234724, 0, 2623476242, 0, 0, 36915112104, 178241928596, 0, 0, 5016108528384, 0, 0, 0, 42600007379160, 205691031143924, 0, 0, 0, 0, 0, 40725785296405556, 98320743200877072, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Compare g.f. to 1 + 2*Sum_{n>=1} Kronecker(n,7)*x^n/(1-(-x)^n) (the Lambert series of A033719).
LINKS
FORMULA
G.f.: 1 + 2*Sum_{n>=1} Pell(n)*Kronecker(n,7)*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 24*x^4 + 338*x^7 + 1632*x^8 + 1970*x^9 + 22964*x^11 +...
where A(x) = 1 + 1*2*x + 12*2*x^4 + 169*2*x^7 + 408*4*x^8 + 985*2*x^9 + 5741*4*x^11 + 470832*6*x^16 + 225058681*4*x^23 +...+ Pell(n)*A033719(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 2*( 1*x/(1+2*x-x^2) + 2*x^2/(1-6*x^2+x^4) - 5*x^3/(1+14*x^3-x^6) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) - 70*x^6/(1-198*x^6+x^12) + 0*169*13*x^7/(1+478*x^7-x^14) +...).
The values of the symbol Kronecker(n,7) repeat [1,1,-1,1,-1,-1,0, ...].
MATHEMATICA
A033719[n_]:= SeriesCoefficient[EllipticTheta[3, 0, x] EllipticTheta[3, 0, x^7], {x, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A033719[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2017 *)
PROG
(PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
{A002203(n)=Pell(n-1)+Pell(n+1)}
{a(n)=polcoeff(1 + 2*sum(m=1, n, Pell(m)*kronecker(m, 7)*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))), n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 10 2012
STATUS
approved