OFFSET
0,2
COMMENTS
Compare g.f. to 1 + 2*Sum_{n>=1} Kronecker(n,7)*x^n/(1-(-x)^n) (the Lambert series of A033719).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
EXAMPLE
G.f.: A(x) = 1 + 2*x + 24*x^4 + 338*x^7 + 1632*x^8 + 1970*x^9 + 22964*x^11 +...
where A(x) = 1 + 1*2*x + 12*2*x^4 + 169*2*x^7 + 408*4*x^8 + 985*2*x^9 + 5741*4*x^11 + 470832*6*x^16 + 225058681*4*x^23 +...+ Pell(n)*A033719(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 2*( 1*x/(1+2*x-x^2) + 2*x^2/(1-6*x^2+x^4) - 5*x^3/(1+14*x^3-x^6) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) - 70*x^6/(1-198*x^6+x^12) + 0*169*13*x^7/(1+478*x^7-x^14) +...).
The values of the symbol Kronecker(n,7) repeat [1,1,-1,1,-1,-1,0, ...].
MATHEMATICA
A033719[n_]:= SeriesCoefficient[EllipticTheta[3, 0, x] EllipticTheta[3, 0, x^7], {x, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A033719[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2017 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 10 2012
STATUS
approved