login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238620
Number of partitions of n having population standard deviation >= 1.
8
0, 0, 0, 1, 1, 3, 5, 10, 15, 23, 33, 52, 68, 94, 132, 180, 239, 318, 412, 543, 693, 885, 1131, 1443, 1803, 2250, 2808, 3499, 4321, 5336, 6552, 8032, 9799, 11914, 14456, 17528, 21136, 25458, 30588, 36699, 43869, 52422, 62437, 74290, 88186, 104527, 123670
OFFSET
1,6
COMMENTS
Regarding "standard deviation" see Comments at A238616.
FORMULA
a(n) = A000041(n) - A238616(n).
EXAMPLE
There are 11 partitions of 6, whose standard deviations are given by these approximations: 0., 2., 1., 1.41421, 0., 0.816497, 0.866025, 0., 0.5, 0.4, 0, so that a(6) = 3.
MAPLE
b:= proc(n, i, m, s, c) `if`(n=0, `if`(s/c-(m/c)^2>=1, 1, 0),
`if`(i=1, b(0$2, m+n, s+n, c+n), add(b(n-i*j, i-1,
m+i*j, s+i^2*j, c+j), j=0..n/i)))
end:
a:= n-> b(n$2, 0$3):
seq(a(n), n=1..50); # Alois P. Heinz, Mar 11 2014
MATHEMATICA
z = 55; g[n_] := g[n] = IntegerPartitions[n]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, Length[t]}]/Length[t]]
Table[Count[g[n], p_ /; s[p] < 1], {n, z}] (*A238616*)
Table[Count[g[n], p_ /; s[p] <= 1], {n, z}] (*A238617*)
Table[Count[g[n], p_ /; s[p] == 1], {n, z}] (*A238618*)
Table[Count[g[n], p_ /; s[p] > 1], {n, z}] (*A238619*)
Table[Count[g[n], p_ /; s[p] >= 1], {n, z}] (*A238620*)
t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
ListPlot[Sort[t[30]]] (*plot of st.dev's of partitions of 30*)
(* Second program: *)
b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n == 0,
If[s/c - (m/c)^2 >= 1, 1, 0], If[i == 1, b[0, 0, m+n, s+n, c+n],
Sum[b[n - i*j, i - 1, m + i*j, s + i^2*j, c + j], {j, 0, n/i}]]];
a[n_] := b[n, n, 0, 0, 0];
Array[a, 50] (* Jean-François Alcover, Jun 03 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A238616.
Sequence in context: A190557 A023602 A024452 * A074968 A308826 A090491
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 01 2014
STATUS
approved